Yang, Le
Tune In, Act Up: Exploring the Impact of Audio Modality-Specific Edits on Large Audio Language Models in Jailbreak
Xiao, Erjia, Cheng, Hao, Shao, Jing, Duan, Jinhao, Xu, Kaidi, Yang, Le, Gu, Jindong, Xu, Renjing
Large Language Models (LLMs) demonstrate remarkable zero-shot performance across various natural language processing tasks. The integration of multimodal encoders extends their capabilities, enabling the development of Multimodal Large Language Models that process vision, audio, and text. However, these capabilities also raise significant security concerns, as these models can be manipulated to generate harmful or inappropriate content through jailbreak. While extensive research explores the impact of modality-specific input edits on text-based LLMs and Large Vision-Language Models in jailbreak, the effects of audio-specific edits on Large Audio-Language Models (LALMs) remain underexplored. Hence, this paper addresses this gap by investigating how audio-specific edits influence LALMs inference regarding jailbreak. We introduce the Audio Editing Toolbox (AET), which enables audio-modality edits such as tone adjustment, word emphasis, and noise injection, and the Edited Audio Datasets (EADs), a comprehensive audio jailbreak benchmark. We also conduct extensive evaluations of state-of-the-art LALMs to assess their robustness under different audio edits. This work lays the groundwork for future explorations on audio-modality interactions in LALMs security.
Stochastically Constrained Best Arm Identification with Thompson Sampling
Yang, Le, Gao, Siyang, Li, Cheng, Wang, Yi
We consider the problem of the best arm identification in the presence of stochastic constraints, where there is a finite number of arms associated with multiple performance measures. The goal is to identify the arm that optimizes the objective measure subject to constraints on the remaining measures. We will explore the popular idea of Thompson sampling (TS) as a means to solve it. To the best of our knowledge, it is the first attempt to extend TS to this problem. We will design a TS-based sampling algorithm, establish its asymptotic optimality in the rate of posterior convergence, and demonstrate its superior performance using numerical examples.
Spot Risks Before Speaking! Unraveling Safety Attention Heads in Large Vision-Language Models
Zheng, Ziwei, Zhao, Junyao, Yang, Le, He, Lijun, Li, Fan
With the integration of an additional modality, large vision-language models (LVLMs) exhibit greater vulnerability to safety risks (e.g., jailbreaking) compared to their language-only predecessors. Although recent studies have devoted considerable effort to the post-hoc alignment of LVLMs, the inner safety mechanisms remain largely unexplored. In this paper, we discover that internal activations of LVLMs during the first token generation can effectively identify malicious prompts across different attacks. This inherent safety perception is governed by sparse attention heads, which we term ``safety heads." Further analysis reveals that these heads act as specialized shields against malicious prompts; ablating them leads to higher attack success rates, while the model's utility remains unaffected. By locating these safety heads and concatenating their activations, we construct a straightforward but powerful malicious prompt detector that integrates seamlessly into the generation process with minimal extra inference overhead. Despite its simple structure of a logistic regression model, the detector surprisingly exhibits strong zero-shot generalization capabilities. Experiments across various prompt-based attacks confirm the effectiveness of leveraging safety heads to protect LVLMs. Code is available at \url{https://github.com/Ziwei-Zheng/SAHs}.
OStr-DARTS: Differentiable Neural Architecture Search based on Operation Strength
Yang, Le, Zheng, Ziwei, Han, Yizeng, Song, Shiji, Huang, Gao, Li, Fan
Differentiable architecture search (DARTS) has emerged as a promising technique for effective neural architecture search, and it mainly contains two steps to find the high-performance architecture: First, the DARTS supernet that consists of mixed operations will be optimized via gradient descent. Second, the final architecture will be built by the selected operations that contribute the most to the supernet. Although DARTS improves the efficiency of NAS, it suffers from the well-known degeneration issue which can lead to deteriorating architectures. Existing works mainly attribute the degeneration issue to the failure of its supernet optimization, while little attention has been paid to the selection method. In this paper, we cease to apply the widely-used magnitude-based selection method and propose a novel criterion based on operation strength that estimates the importance of an operation by its effect on the final loss. We show that the degeneration issue can be effectively addressed by using the proposed criterion without any modification of supernet optimization, indicating that the magnitude-based selection method can be a critical reason for the instability of DARTS. The experiments on NAS-Bench-201 and DARTS search spaces show the effectiveness of our method.
Adaptive Hybrid Masking Strategy for Privacy-Preserving Face Recognition Against Model Inversion Attack
Wang, Yinggui, Huang, Yuanqing, Li, Jianshu, Yang, Le, Song, Kai, Wang, Lei
The utilization of personal sensitive data in training face recognition (FR) models poses significant privacy concerns, as adversaries can employ model inversion attacks (MIA) to infer the original training data. Existing defense methods, such as data augmentation and differential privacy, have been employed to mitigate this issue. However, these methods often fail to strike an optimal balance between privacy and accuracy. To address this limitation, this paper introduces an adaptive hybrid masking algorithm against MIA. Specifically, face images are masked in the frequency domain using an adaptive MixUp strategy. Unlike the traditional MixUp algorithm, which is predominantly used for data augmentation, our modified approach incorporates frequency domain mixing. Previous studies have shown that increasing the number of images mixed in MixUp can enhance privacy preservation but at the expense of reduced face recognition accuracy. To overcome this trade-off, we develop an enhanced adaptive MixUp strategy based on reinforcement learning, which enables us to mix a larger number of images while maintaining satisfactory recognition accuracy. To optimize privacy protection, we propose maximizing the reward function (i.e., the loss function of the FR system) during the training of the strategy network. While the loss function of the FR network is minimized in the phase of training the FR network. The strategy network and the face recognition network can be viewed as antagonistic entities in the training process, ultimately reaching a more balanced trade-off. Experimental results demonstrate that our proposed hybrid masking scheme outperforms existing defense algorithms in terms of privacy preservation and recognition accuracy against MIA. Face recognition (FR) has found wide applications in various practical systems, as face images provide unique identity information.
EVAN: Evolutional Video Streaming Adaptation via Neural Representation
Liu, Mufan, Yang, Le, Xu, Yiling, Wang, Ye-kui, Hwang, Jenq-Neng
Adaptive bitrate (ABR) using conventional codecs cannot further modify the bitrate once a decision has been made, exhibiting limited adaptation capability. This may result in either overly conservative or overly aggressive bitrate selection, which could cause either inefficient utilization of the network bandwidth or frequent re-buffering, respectively. Neural representation for video (NeRV), which embeds the video content into neural network weights, allows video reconstruction with incomplete models. Specifically, the recovery of one frame can be achieved without relying on the decoding of adjacent frames. NeRV has the potential to provide high video reconstruction quality and, more importantly, pave the way for developing more flexible ABR strategies for video transmission. In this work, a new framework, named Evolutional Video streaming Adaptation via Neural representation (EVAN), which can adaptively transmit NeRV models based on soft actor-critic (SAC) reinforcement learning, is proposed. EVAN is trained with a more exploitative strategy and utilizes progressive playback to avoid re-buffering. Experiments showed that EVAN can outperform existing ABRs with 50% reduction in re-buffering and achieve nearly 20% .
Privacy-Preserving End-to-End Spoken Language Understanding
Wang, Yinggui, Huang, Wei, Yang, Le
Spoken language understanding (SLU), one of the key enabling technologies for human-computer interaction in IoT devices, provides an easy-to-use user interface. Human speech can contain a lot of user-sensitive information, such as gender, identity, and sensitive content. New types of security and privacy breaches have thus emerged. Users do not want to expose their personal sensitive information to malicious attacks by untrusted third parties. Thus, the SLU system needs to ensure that a potential malicious attacker cannot deduce the sensitive attributes of the users, while it should avoid greatly compromising the SLU accuracy. To address the above challenge, this paper proposes a novel SLU multi-task privacy-preserving model to prevent both the speech recognition (ASR) and identity recognition (IR) attacks. The model uses the hidden layer separation technique so that SLU information is distributed only in a specific portion of the hidden layer, and the other two types of information are removed to obtain a privacy-secure hidden layer. In order to achieve good balance between efficiency and privacy, we introduce a new mechanism of model pre-training, namely joint adversarial training, to further enhance the user privacy. Experiments over two SLU datasets show that the proposed method can reduce the accuracy of both the ASR and IR attacks close to that of a random guess, while leaving the SLU performance largely unaffected.
AI-Driven Anonymization: Protecting Personal Data Privacy While Leveraging Machine Learning
Yang, Le, Tian, Miao, Xin, Duan, Cheng, Qishuo, Zheng, Jiajian
Generative AI, which can create text and chat with users, presents a unique challenge because it can make people feel like they're interacting with a human. Anthropomorphism is the ascription of human attributes or personality to nonhumans. People often anthropomorphize artificial intelligence (especially Generative AI) because it can create human-like outputs. Among them, information transmission activities based on artificial intelligence technology have received more and more attention. With the help of artificial intelligence technology to obtain information and transmit information, it can be more convenient and accelerate the realization of information interaction, industry marketing, user interaction, brand publicity, and advertising, and create more creative content. Artificial intelligence technology has brought great changes and more availability to everyone's daily life and receiving information channels. However, the collection of personal data is more and more extensive, which also makes the problem of personal data privacy and security more serious. Therefore, combined with the double-sided nature of artificial intelligence, this paper analyzes the advantages and disadvantages of intelligent data processing in personal data privacy, applies the machine learning differential privacy algorithm combined with intelligent data processing to the research, and realizes the risk prediction and protection of personal data. This serves as a reminder for everyone on how to use artificial intelligence to protect their information security more effectively."
Optimizing Portfolio Management and Risk Assessment in Digital Assets Using Deep Learning for Predictive Analysis
Cheng, Qishuo, Yang, Le, Zheng, Jiajian, Tian, Miao, Xin, Duan
Portfolio management issues have been extensively studied in the field of artificial intelligence in recent years, but existing deep learning-based quantitative trading methods have some areas where they could be improved. First of all, the prediction mode of stocks is singular; often, only one trading 1 * Corresponding author: [Qishuo Cheng]. Email: [qishuoc@uchicago.edu]. 2 expert is trained by a model, and the trading decision is solely based on the prediction results of the model. Secondly, the data source used by the model is relatively simple, and only considers the data of the stock itself, ignoring the impact of the whole market risk on the stock. In this paper, the DQN algorithm is introduced into asset management portfolios in a novel and straightforward way, and the performance greatly exceeds the benchmark, which fully proves the effectiveness of the DRL algorithm in portfolio management. This also inspires us to consider the complexity of financial problems, and the use of algorithms should be fully combined with the problems to adapt. Finally, in this paper, the strategy is implemented by selecting the assets and actions with the largest Q value. Since different assets are trained separately as environments, there may be a phenomenon of Q value drift among different assets (different assets have different Q value distribution areas), which may easily lead to incorrect asset selection. Consider adding constraints so that the Q values of different assets share a Q value distribution to improve results.
Fixing Overconfidence in Dynamic Neural Networks
Meronen, Lassi, Trapp, Martin, Pilzer, Andrea, Yang, Le, Solin, Arno
Dynamic neural networks are a recent technique that promises a remedy for the increasing size of modern deep learning models by dynamically adapting their computational cost to the difficulty of the inputs. In this way, the model can adjust to a limited computational budget. However, the poor quality of uncertainty estimates in deep learning models makes it difficult to distinguish between hard and easy samples. To address this challenge, we present a computationally efficient approach for post-hoc uncertainty quantification in dynamic neural networks. We show that adequately quantifying and accounting for both aleatoric and epistemic uncertainty through a probabilistic treatment of the last layers improves the predictive performance and aids decision-making when determining the computational budget. In the experiments, we show improvements on CIFAR-100, ImageNet, and Caltech-256 in terms of accuracy, capturing uncertainty, and calibration error.