Goto

Collaborating Authors

 Yang, Jonathan


Pushing the Limits of Cross-Embodiment Learning for Manipulation and Navigation

arXiv.org Artificial Intelligence

Recent years in robotics and imitation learning have shown remarkable progress in training large-scale foundation models by leveraging data across a multitude of embodiments. The success of such policies might lead us to wonder: just how diverse can the robots in the training set be while still facilitating positive transfer? In this work, we study this question in the context of heterogeneous embodiments, examining how even seemingly very different domains, such as robotic navigation and manipulation, can provide benefits when included in the training data for the same model. We train a single goal-conditioned policy that is capable of controlling robotic arms, quadcopters, quadrupeds, and mobile bases. We then investigate the extent to which transfer can occur across navigation and manipulation on these embodiments by framing them as a single goal-reaching task. We find that co-training with navigation data can enhance robustness and performance in goal-conditioned manipulation with a wrist-mounted camera. We then deploy our policy trained only from navigation-only and static manipulation-only data on a mobile manipulator, showing that it can control a novel embodiment in a zero-shot manner. These results provide evidence that large-scale robotic policies can benefit from data collected across various embodiments. Further information and robot videos can be found on our project website http://extreme-cross-embodiment.github.io.


Open X-Embodiment: Robotic Learning Datasets and RT-X Models

arXiv.org Artificial Intelligence

Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretrained backbones serving as a starting point for many applications. Can such a consolidation happen in robotics? Conventionally, robotic learning methods train a separate model for every application, every robot, and even every environment. Can we instead train generalist X-robot policy that can be adapted efficiently to new robots, tasks, and environments? In this paper, we provide datasets in standardized data formats and models to make it possible to explore this possibility in the context of robotic manipulation, alongside experimental results that provide an example of effective X-robot policies. We assemble a dataset from 22 different robots collected through a collaboration between 21 institutions, demonstrating 527 skills (160266 tasks). We show that a high-capacity model trained on this data, which we call RT-X, exhibits positive transfer and improves the capabilities of multiple robots by leveraging experience from other platforms. More details can be found on the project website $\href{https://robotics-transformer-x.github.io}{\text{robotics-transformer-x.github.io}}$.


Analysis of Weather and Time Features in Machine Learning-aided ERCOT Load Forecasting

arXiv.org Artificial Intelligence

Accurate load forecasting is critical for efficient and reliable operations of the electric power system. A large part of electricity consumption is affected by weather conditions, making weather information an important determinant of electricity usage. Personal appliances and industry equipment also contribute significantly to electricity demand with temporal patterns, making time a useful factor to consider in load forecasting. This work develops several machine learning (ML) models that take various time and weather information as part of the input features to predict the short-term system-wide total load. Ablation studies were also performed to investigate and compare the impacts of different weather factors on the prediction accuracy. Actual load and historical weather data for the same region were processed and then used to train the ML models. It is interesting to observe that using all available features, each of which may be correlated to the load, is unlikely to achieve the best forecasting performance; features with redundancy may even decrease the inference capabilities of ML models. This indicates the importance of feature selection for ML models. Overall, case studies demonstrated the effectiveness of ML models trained with different weather and time input features for ERCOT load forecasting.


Polybot: Training One Policy Across Robots While Embracing Variability

arXiv.org Artificial Intelligence

Reusing large datasets is crucial to scale vision-based robotic manipulators to everyday scenarios due to the high cost of collecting robotic datasets. However, robotic platforms possess varying control schemes, camera viewpoints, kinematic configurations, and end-effector morphologies, posing significant challenges when transferring manipulation skills from one platform to another. To tackle this problem, we propose a set of key design decisions to train a single policy for deployment on multiple robotic platforms. Our framework first aligns the observation and action spaces of our policy across embodiments via utilizing wrist cameras and a unified, but modular codebase. To bridge the remaining domain shift, we align our policy's internal representations across embodiments through contrastive learning. We evaluate our method on a dataset collected over 60 hours spanning 6 tasks and 3 robots with varying joint configurations and sizes: the WidowX 250S, the Franka Emika Panda, and the Sawyer. Our results demonstrate significant improvements in success rate and sample efficiency for our policy when using new task data collected on a different robot, validating our proposed design decisions. More details and videos can be found on our anonymized project website: https://sites.google.com/view/polybot-multirobot