Yang, Haizhao
A Distributed Block Chebyshev-Davidson Algorithm for Parallel Spectral Clustering
Pang, Qiyuan, Yang, Haizhao
We develop a distributed Block Chebyshev-Davidson algorithm to solve large-scale leading eigenvalue problems for spectral analysis in spectral clustering. First, the efficiency of the Chebyshev-Davidson algorithm relies on the prior knowledge of the eigenvalue spectrum, which could be expensive to estimate. This issue can be lessened by the analytic spectrum estimation of the Laplacian or normalized Laplacian matrices in spectral clustering, making the proposed algorithm very efficient for spectral clustering. Second, to make the proposed algorithm capable of analyzing big data, a distributed and parallel version has been developed with attractive scalability. The speedup by parallel computing is approximately equivalent to $\sqrt{p}$, where $p$ denotes the number of processes. {Numerical results will be provided to demonstrate its efficiency in spectral clustering and scalability advantage over existing eigensolvers used for spectral clustering in parallel computing environments.}
Neural Network Approximation for Pessimistic Offline Reinforcement Learning
Wu, Di, Jiao, Yuling, Shen, Li, Yang, Haizhao, Lu, Xiliang
Deep reinforcement learning (RL) has shown remarkable success in specific offline decision-making scenarios, yet its theoretical guarantees are still under development. Existing works on offline RL theory primarily emphasize a few trivial settings, such as linear MDP or general function approximation with strong assumptions and independent data, which lack guidance for practical use. The coupling of deep learning and Bellman residuals makes this problem challenging, in addition to the difficulty of data dependence. In this paper, we establish a non-asymptotic estimation error of pessimistic offline RL using general neural network approximation with $\mathcal{C}$-mixing data regarding the structure of networks, the dimension of datasets, and the concentrability of data coverage, under mild assumptions. Our result shows that the estimation error consists of two parts: the first converges to zero at a desired rate on the sample size with partially controllable concentrability, and the second becomes negligible if the residual constraint is tight. This result demonstrates the explicit efficiency of deep adversarial offline RL frameworks. We utilize the empirical process tool for $\mathcal{C}$-mixing sequences and the neural network approximation theory for the H\"{o}lder class to achieve this. We also develop methods to bound the Bellman estimation error caused by function approximation with empirical Bellman constraint perturbations. Additionally, we present a result that lessens the curse of dimensionality using data with low intrinsic dimensionality and function classes with low complexity. Our estimation provides valuable insights into the development of deep offline RL and guidance for algorithm model design.
Solving PDEs on Unknown Manifolds with Machine Learning
Liang, Senwei, Jiang, Shixiao W., Harlim, John, Yang, Haizhao
This paper proposes a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifolds, identified with point clouds, based on diffusion maps (DM) and deep learning. The PDE solver is formulated as a supervised learning task to solve a least-squares regression problem that imposes an algebraic equation approximating a PDE (and boundary conditions if applicable). This algebraic equation involves a graph-Laplacian type matrix obtained via DM asymptotic expansion, which is a consistent estimator of second-order elliptic differential operators. The resulting numerical method is to solve a highly non-convex empirical risk minimization problem subjected to a solution from a hypothesis space of neural networks (NNs). In a well-posed elliptic PDE setting, when the hypothesis space consists of neural networks with either infinite width or depth, we show that the global minimizer of the empirical loss function is a consistent solution in the limit of large training data. When the hypothesis space is a two-layer neural network, we show that for a sufficiently large width, gradient descent can identify a global minimizer of the empirical loss function. Supporting numerical examples demonstrate the convergence of the solutions, ranging from simple manifolds with low and high co-dimensions, to rough surfaces with and without boundaries. We also show that the proposed NN solver can robustly generalize the PDE solution on new data points with generalization errors that are almost identical to the training errors, superseding a Nystrom-based interpolation method.
Finite Expression Method for Solving High-Dimensional Partial Differential Equations
Liang, Senwei, Yang, Haizhao
Designing efficient and accurate numerical solvers for high-dimensional partial differential equations (PDEs) remains a challenging and important topic in computational science and engineering, mainly due to the "curse of dimensionality" in designing numerical schemes that scale in dimension. This paper introduces a new methodology that seeks an approximate PDE solution in the space of functions with finitely many analytic expressions and, hence, this methodology is named the finite expression method (FEX). It is proved in approximation theory that FEX can avoid the curse of dimensionality. As a proof of concept, a deep reinforcement learning method is proposed to implement FEX for various high-dimensional PDEs in different dimensions, achieving high and even machine accuracy with a memory complexity polynomial in dimension and an amenable time complexity. An approximate solution with finite analytic expressions also provides interpretable insights into the ground truth PDE solution, which can further help to advance the understanding of physical systems and design postprocessing techniques for a refined solution.
Deep Operator Learning Lessens the Curse of Dimensionality for PDEs
Chen, Ke, Wang, Chunmei, Yang, Haizhao
Deep neural networks (DNNs) have achieved remarkable success in numerous domains, and their application to PDE-related problems has been rapidly advancing. This paper provides an estimate for the generalization error of learning Lipschitz operators over Banach spaces using DNNs with applications to various PDE solution operators. The goal is to specify DNN width, depth, and the number of training samples needed to guarantee a certain testing error. Under mild assumptions on data distributions or operator structures, our analysis shows that deep operator learning can have a relaxed dependence on the discretization resolution of PDEs and, hence, lessen the curse of dimensionality in many PDE-related problems including elliptic equations, parabolic equations, and Burgers equations. Our results are also applied to give insights about discretization-invariance in operator learning.
On Fast Simulation of Dynamical System with Neural Vector Enhanced Numerical Solver
Huang, Zhongzhan, Liang, Senwei, Zhang, Hong, Yang, Haizhao, Lin, Liang
The large-scale simulation of dynamical systems is critical in numerous scientific and engineering disciplines. However, traditional numerical solvers are limited by the choice of step sizes when estimating integration, resulting in a trade-off between accuracy and computational efficiency. To address this challenge, we introduce a deep learning-based corrector called Neural Vector (NeurVec), which can compensate for integration errors and enable larger time step sizes in simulations. Our extensive experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability on a continuous phase space, even when trained using limited and discrete data. NeurVec significantly accelerates traditional solvers, achieving speeds tens to hundreds of times faster while maintaining high levels of accuracy and stability. Moreover, NeurVec's simple-yet-effective design, combined with its ease of implementation, has the potential to establish a new paradigm for fast-solving differential equations based on deep learning.
Finite Expression Methods for Discovering Physical Laws from Data
Jiang, Zhongyi, Wang, Chunmei, Yang, Haizhao
Nonlinear dynamics is a pervasive phenomenon observed in scientific and engineering disciplines. However, the task of deriving analytical expressions to describe nonlinear dynamics from limited data remains challenging. In this paper, we shall present a novel deep symbolic learning method called the "finite expression method" (FEX) to discover governing equations within a function space containing a finite set of analytic expressions, based on observed dynamic data. The key concept is to employ FEX to generate analytical expressions of the governing equations by learning the derivatives of partial differential equation (PDE) solutions through convolutions. Our numerical results demonstrate that our FEX surpasses other existing methods (such as PDE-Net, SINDy, GP, and SPL) in terms of numerical performance across a range of problems, including time-dependent PDE problems and nonlinear dynamical systems with time-varying coefficients. Moreover, the results highlight FEX's flexibility and expressive power in accurately approximating symbolic governing equations.
What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?
Han, Songyang, Su, Sanbao, He, Sihong, Han, Shuo, Yang, Haizhao, Miao, Fei
Various methods for Multi-Agent Reinforcement Learning (MARL) have been developed with the assumption that agents' policies are based on accurate state information. However, policies learned through Deep Reinforcement Learning (DRL) are susceptible to adversarial state perturbation attacks. In this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to investigate the fundamental properties of MARL under state uncertainties. Our analysis shows that the commonly used solution concepts of optimal agent policy and robust Nash equilibrium do not always exist in SAMGs. To circumvent this difficulty, we consider a new solution concept called robust agent policy, where agents aim to maximize the worst-case expected state value. We prove the existence of robust agent policy for finite state and finite action SAMGs. Additionally, we propose a Robust Multi-Agent Adversarial Actor-Critic (RMA3C) algorithm to learn robust policies for MARL agents under state uncertainties. Our experiments demonstrate that our algorithm outperforms existing methods when faced with state perturbations and greatly improves the robustness of MARL policies. Our code is public on https://songyanghan.github.io/what_is_solution/.
A Finite Expression Method for Solving High-Dimensional Committor Problems
Song, Zezheng, Cameron, Maria K., Yang, Haizhao
Transition path theory (TPT) is a mathematical framework for quantifying rare transition events between a pair of selected metastable states $A$ and $B$. Central to TPT is the committor function, which describes the probability to hit the metastable state $B$ prior to $A$ from any given starting point of the phase space. Once the committor is computed, the transition channels and the transition rate can be readily found. The committor is the solution to the backward Kolmogorov equation with appropriate boundary conditions. However, solving it is a challenging task in high dimensions due to the need to mesh a whole region of the ambient space. In this work, we explore the finite expression method (FEX, Liang and Yang (2022)) as a tool for computing the committor. FEX approximates the committor by an algebraic expression involving a fixed finite number of nonlinear functions and binary arithmetic operations. The optimal nonlinear functions, the binary operations, and the numerical coefficients in the expression template are found via reinforcement learning. The FEX-based committor solver is tested on several high-dimensional benchmark problems. It gives comparable or better results than neural network-based solvers. Most importantly, FEX is capable of correctly identifying the algebraic structure of the solution which allows one to reduce the committor problem to a low-dimensional one and find the committor with any desired accuracy.
Spectral Clustering via Orthogonalization-Free Methods
Pang, Qiyuan, Yang, Haizhao
Graph Signal Filter used as dimensionality reduction in spectral clustering usually requires expensive eigenvalue estimation. We analyze the filter in an optimization setting and propose to use four orthogonalization-free methods by optimizing objective functions as dimensionality reduction in spectral clustering. The proposed methods do not utilize any orthogonalization, which is known as not well scalable in a parallel computing environment. Our methods theoretically construct adequate feature space, which is, at most, a weighted alteration to the eigenspace of a normalized Laplacian matrix. We numerically hypothesize that the proposed methods are equivalent in clustering quality to the ideal Graph Signal Filter, which exploits the exact eigenvalue needed without expensive eigenvalue estimation. Numerical results show that the proposed methods outperform Power Iteration-based methods and Graph Signal Filter in clustering quality and computation cost. Unlike Power Iteration-based methods and Graph Signal Filter which require random signal input, our methods are able to utilize available initialization in the streaming graph scenarios. Additionally, numerical results show that our methods outperform ARPACK and are faster than LOBPCG in the streaming graph scenarios. We also present numerical results showing the scalability of our methods in multithreading and multiprocessing implementations to facilitate parallel spectral clustering.