Goto

Collaborating Authors

 Yan, Yuchen


InftyThink: Breaking the Length Limits of Long-Context Reasoning in Large Language Models

arXiv.org Artificial Intelligence

Advanced reasoning in large language models has achieved remarkable performance on challenging tasks, but the prevailing long-context reasoning paradigm faces critical limitations: quadratic computational scaling with sequence length, reasoning constrained by maximum context boundaries, and performance degradation beyond pre-training context windows. Existing approaches primarily compress reasoning chains without addressing the fundamental scaling problem. To overcome these challenges, we introduce InftyThink, a paradigm that transforms monolithic reasoning into an iterative process with intermediate summarization. By interleaving short reasoning segments with concise progress summaries, our approach enables unbounded reasoning depth while maintaining bounded computational costs. This creates a characteristic sawtooth memory pattern that significantly reduces computational complexity compared to traditional approaches. Furthermore, we develop a methodology for reconstructing long-context reasoning datasets into our iterative format, transforming OpenR1-Math into 333K training instances. Experiments across multiple model architectures demonstrate that our approach reduces computational costs while improving performance, with Qwen2.5-Math-7B showing 3-13% improvements across MATH500, AIME24, and GPQA_diamond benchmarks. Our work challenges the assumed trade-off between reasoning depth and computational efficiency, providing a more scalable approach to complex reasoning without architectural modifications.


AskToAct: Enhancing LLMs Tool Use via Self-Correcting Clarification

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable capabilities in tool learning. In real-world scenarios, user queries are often ambiguous and incomplete, requiring effective clarification. However, existing interactive clarification approaches face two critical limitations: reliance on manually constructed datasets and lack of error correction mechanisms during multi-turn clarification. We present AskToAct, which addresses these challenges by exploiting the structural mapping between queries and their tool invocation solutions. Our key insight is that tool parameters naturally represent explicit user intents. By systematically removing key parameters from queries while retaining them as ground truth, we enable automated construction of high-quality training data. We further enhance model robustness by fine-tuning on error-correction augmented data using selective masking mechanism, enabling dynamic error detection during clarification interactions. Comprehensive experiments demonstrate that AskToAct significantly outperforms existing approaches, achieving above 79% accuracy in recovering critical unspecified intents and enhancing clarification efficiency by an average of 48.34% while maintaining high accuracy in tool invocation. Our framework exhibits robust performance across varying complexity levels and successfully generalizes to entirely unseen APIs without additional training, achieving performance comparable to GPT-4 with substantially fewer computational resources.


Joint Optimal Transport and Embedding for Network Alignment

arXiv.org Artificial Intelligence

Network alignment, which aims to find node correspondence across different networks, is the cornerstone of various downstream multi-network and Web mining tasks. Most of the embedding-based methods indirectly model cross-network node relationships by contrasting positive and negative node pairs sampled from hand-crafted strategies, which are vulnerable to graph noises and lead to potential misalignment of nodes. Another line of work based on the optimal transport (OT) theory directly models cross-network node relationships and generates noise-reduced alignments. However, OT methods heavily rely on fixed, pre-defined cost functions that prohibit end-to-end training and are hard to generalize. In this paper, we aim to unify the embedding and OT-based methods in a mutually beneficial manner and propose a joint optimal transport and embedding framework for network alignment named JOENA. For one thing (OT for embedding), through a simple yet effective transformation, the noise-reduced OT mapping serves as an adaptive sampling strategy directly modeling all cross-network node pairs for robust embedding learning.For another (embedding for OT), on top of the learned embeddings, the OT cost can be gradually trained in an end-to-end fashion, which further enhances the alignment quality. With a unified objective, the mutual benefits of both methods can be achieved by an alternating optimization schema with guaranteed convergence. Extensive experiments on real-world networks validate the effectiveness and scalability of JOENA, achieving up to 16% improvement in MRR and 20x speedup compared with the state-of-the-art alignment methods.


MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task

arXiv.org Artificial Intelligence

Mathematical reasoning represents a critical frontier in advancing large language models (LLMs). While step-by-step approaches have emerged as the dominant paradigm for mathematical problem-solving in LLMs, the quality of reasoning steps in training data fundamentally constrains the performance of the models. Recent studies has demonstrated that more detailed intermediate steps can enhance model performance, yet existing methods for step expansion either require more powerful external models or incur substantial computational costs. In this paper, we introduce MathFimer, a novel framework for mathematical reasoning step expansion inspired by the "Fill-in-the-middle" task from code completion. By decomposing solution chains into prefix-suffix pairs and training models to reconstruct missing intermediate steps, we develop a specialized model, MathFimer-7B, on our carefully curated NuminaMath-FIM dataset. We then apply these models to enhance existing mathematical reasoning datasets by inserting detailed intermediate steps into their solution chains, creating MathFimer-expanded versions. Through comprehensive experiments on multiple mathematical reasoning datasets, including MathInstruct, MetaMathQA and etc., we demonstrate that models trained on MathFimer-expanded data consistently outperform their counterparts trained on original data across various benchmarks such as GSM8K and MATH. Our approach offers a practical, scalable solution for enhancing mathematical reasoning capabilities in LLMs without relying on powerful external models or expensive inference procedures.


Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving

arXiv.org Artificial Intelligence

Existing approaches to mathematical reasoning with large language models (LLMs) rely on Chain-of-Thought (CoT) for generalizability or Tool-Integrated Reasoning (TIR) for precise computation. While efforts have been made to combine these methods, they primarily rely on post-selection or predefined strategies, leaving an open question: whether LLMs can autonomously adapt their reasoning strategy based on their inherent capabilities. In this work, we propose TATA (Teaching LLMs According to Their Aptitude), an adaptive framework that enables LLMs to personalize their reasoning strategy spontaneously, aligning it with their intrinsic aptitude. TATA incorporates base-LLM-aware data selection during supervised fine-tuning (SFT) to tailor training data to the model's unique abilities. This approach equips LLMs to autonomously determine and apply the appropriate reasoning strategy at test time. We evaluate TATA through extensive experiments on six mathematical reasoning benchmarks, using both general-purpose and math-specialized LLMs. Empirical results demonstrate that TATA effectively combines the complementary strengths of CoT and TIR, achieving superior or comparable performance with improved inference efficiency compared to TIR alone. Further analysis underscores the critical role of aptitude-aware data selection in enabling LLMs to make effective and adaptive reasoning decisions and align reasoning strategies with model capabilities.


UGPhysics: A Comprehensive Benchmark for Undergraduate Physics Reasoning with Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable capabilities in solving complex reasoning tasks, particularly in mathematics. However, the domain of physics reasoning presents unique challenges that have received significantly less attention. Existing benchmarks often fall short in evaluating LLMs' abilities on the breadth and depth of undergraduate-level physics, underscoring the need for a comprehensive evaluation. To fill this gap, we introduce UGPhysics, a large-scale and comprehensive benchmark specifically designed to evaluate UnderGraduate-level Physics (UGPhysics) reasoning with LLMs. UGPhysics includes 5,520 undergraduate-level physics problems in both English and Chinese, covering 13 subjects with seven different answer types and four distinct physics reasoning skills, all rigorously screened for data leakage. Additionally, we develop a Model-Assistant Rule-based Judgment (MARJ) pipeline specifically tailored for assessing answer correctness of physics problems, ensuring accurate evaluation. Our evaluation of 31 leading LLMs shows that the highest overall accuracy, 49.8% (achieved by OpenAI-o1-mini), emphasizes the necessity for models with stronger physics reasoning skills, beyond math abilities. We hope UGPhysics, along with MARJ, will drive future advancements in AI for physics reasoning. Codes and data are available at https://github.com/YangLabHKUST/UGPhysics .


THeGCN: Temporal Heterophilic Graph Convolutional Network

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have exhibited remarkable efficacy in diverse graph learning tasks, particularly on static homophilic graphs. Recent attention has pivoted towards more intricate structures, encompassing (1) static heterophilic graphs encountering the edge heterophily issue in the spatial domain and (2) event-based continuous graphs in the temporal domain. State-of-the-art (SOTA) has been concurrently addressing these two lines of work but tends to overlook the presence of heterophily in the temporal domain, constituting the temporal heterophily issue. Furthermore, we highlight that the edge heterophily issue and the temporal heterophily issue often co-exist in event-based continuous graphs, giving rise to the temporal edge heterophily challenge. To tackle this challenge, this paper first introduces the temporal edge heterophily measurement. Subsequently, we propose the Temporal Heterophilic Graph Convolutional Network (THeGCN), an innovative model that incorporates the low/high-pass graph signal filtering technique to accurately capture both edge (spatial) heterophily and temporal heterophily. Specifically, the THeGCN model consists of two key components: a sampler and an aggregator. The sampler selects events relevant to a node at a given moment. Then, the aggregator executes message-passing, encoding temporal information, node attributes, and edge attributes into node embeddings. Extensive experiments conducted on 5 real-world datasets validate the efficacy of THeGCN.


SILC-EFSA: Self-aware In-context Learning Correction for Entity-level Financial Sentiment Analysis

arXiv.org Artificial Intelligence

In recent years, fine-grained sentiment analysis in finance has gained significant attention, but the scarcity of entity-level datasets remains a key challenge. To address this, we have constructed the largest English and Chinese financial entity-level sentiment analysis datasets to date. Building on this foundation, we propose a novel two-stage sentiment analysis approach called Self-aware In-context Learning Correction (SILC). The first stage involves fine-tuning a base large language model to generate pseudo-labeled data specific to our task. In the second stage, we train a correction model using a GNN-based example retriever, which is informed by the pseudo-labeled data. This two-stage strategy has allowed us to achieve state-of-the-art performance on the newly constructed datasets, advancing the field of financial sentiment analysis. In a case study, we demonstrate the enhanced practical utility of our data and methods in monitoring the cryptocurrency market. Our datasets and code are available at https://github.com/NLP-Bin/SILC-EFSA.


GPT4Rec: Graph Prompt Tuning for Streaming Recommendation

arXiv.org Artificial Intelligence

In the realm of personalized recommender systems, the challenge of adapting to evolving user preferences and the continuous influx of new users and items is paramount. Conventional models, typically reliant on a static training-test approach, struggle to keep pace with these dynamic demands. Streaming recommendation, particularly through continual graph learning, has emerged as a novel solution. However, existing methods in this area either rely on historical data replay, which is increasingly impractical due to stringent data privacy regulations; or are inability to effectively address the over-stability issue; or depend on model-isolation and expansion strategies. To tackle these difficulties, we present GPT4Rec, a Graph Prompt Tuning method for streaming Recommendation. Given the evolving user-item interaction graph, GPT4Rec first disentangles the graph patterns into multiple views. After isolating specific interaction patterns and relationships in different views, GPT4Rec utilizes lightweight graph prompts to efficiently guide the model across varying interaction patterns within the user-item graph. Firstly, node-level prompts are employed to instruct the model to adapt to changes in the attributes or properties of individual nodes within the graph. Secondly, structure-level prompts guide the model in adapting to broader patterns of connectivity and relationships within the graph. Finally, view-level prompts are innovatively designed to facilitate the aggregation of information from multiple disentangled views. These prompt designs allow GPT4Rec to synthesize a comprehensive understanding of the graph, ensuring that all vital aspects of the user-item interactions are considered and effectively integrated. Experiments on four diverse real-world datasets demonstrate the effectiveness and efficiency of our proposal.


SimCE: Simplifying Cross-Entropy Loss for Collaborative Filtering

arXiv.org Artificial Intelligence

The learning objective is integral to collaborative filtering systems, where the Bayesian Personalized Ranking (BPR) loss is widely used for learning informative backbones. However, BPR often experiences slow convergence and suboptimal local optima, partially because it only considers one negative item for each positive item, neglecting the potential impacts of other unobserved items. To address this issue, the recently proposed Sampled Softmax Cross-Entropy (SSM) compares one positive sample with multiple negative samples, leading to better performance. Our comprehensive experiments confirm that recommender systems consistently benefit from multiple negative samples during training. Furthermore, we introduce a \underline{Sim}plified Sampled Softmax \underline{C}ross-\underline{E}ntropy Loss (SimCE), which simplifies the SSM using its upper bound. Our validation on 12 benchmark datasets, using both MF and LightGCN backbones, shows that SimCE significantly outperforms both BPR and SSM.