Goto

Collaborating Authors

 Yaghoobzadeh, Yadollah


Explanations of Deep Language Models Explain Language Representations in the Brain

arXiv.org Artificial Intelligence

Recent advances in artificial intelligence have given rise to large language models (LLMs) that not only achieve human-like performance but also share computational principles with the brain's language processing mechanisms. While previous research has primarily focused on aligning LLMs' internal representations with neural activity, we introduce a novel approach that leverages explainable AI (XAI) methods to forge deeper connections between the two domains. Using attribution methods, we quantified how preceding words contribute to an LLM's next-word predictions and employed these explanations to predict fMRI recordings from participants listening to the same narratives. Our findings demonstrate that attribution methods robustly predict brain activity across the language network, surpassing traditional internal representations in early language areas. This alignment is hierarchical: early-layer explanations correspond to the initial stages of language processing in the brain, while later layers align with more advanced stages. Moreover, the layers more influential on LLM next-word prediction$\unicode{x2014}$those with higher attribution scores$\unicode{x2014}$exhibited stronger alignment with neural activity. This work establishes a bidirectional bridge between AI and neuroscience. First, we demonstrate that attribution methods offer a powerful lens for investigating the neural mechanisms of language comprehension, revealing how meaning emerges from preceding context. Second, we propose using brain alignment as a metric to evaluate the validity of attribution methods, providing a framework for assessing their biological plausibility.


PerCul: A Story-Driven Cultural Evaluation of LLMs in Persian

arXiv.org Artificial Intelligence

Large language models predominantly reflect Western cultures, largely due to the dominance of English-centric training data. This imbalance presents a significant challenge, as LLMs are increasingly used across diverse contexts without adequate evaluation of their cultural competence in non-English languages, including Persian. To address this gap, we introduce PerCul, a carefully constructed dataset designed to assess the sensitivity of LLMs toward Persian culture. PerCul features story-based, multiple-choice questions that capture culturally nuanced scenarios. Unlike existing benchmarks, PerCul is curated with input from native Persian annotators to ensure authenticity and to prevent the use of translation as a shortcut. We evaluate several state-of-the-art multilingual and Persian-specific LLMs, establishing a foundation for future research in cross-cultural NLP evaluation. Our experiments demonstrate a 11.3% gap between best closed source model and layperson baseline while the gap increases to 21.3% by using the best open-weight model. You can access the dataset from here: https://huggingface.co/datasets/teias-ai/percul


Extending LLMs to New Languages: A Case Study of Llama and Persian Adaptation

arXiv.org Artificial Intelligence

Large language models (LLMs) have made great progress in classification and text generation tasks. However, they are mainly trained on English data and often struggle with low-resource languages. In this study, we explore adding a new language, i.e., Persian, to Llama (a model with a limited understanding of Persian) using parameter-efficient fine-tuning. We employ a multi-stage approach involving pretraining on monolingual Persian data, aligning representations through bilingual pretraining and instruction datasets, and instruction-tuning with task-specific datasets. We evaluate the model's performance at each stage on generation and classification tasks. Our findings suggest that incorporating the Persian language, through bilingual data alignment, can enhance classification accuracy for Persian tasks, with no adverse impact and sometimes even improvements on English tasks. Additionally, the results highlight the model's initial strength as a critical factor when working with limited training data, with cross-lingual alignment offering minimal benefits for the low-resource language. Knowledge transfer from English to Persian has a marginal effect, primarily benefiting simple classification tasks.


A Comparative Study of LLMs, NMT Models, and Their Combination in Persian-English Idiom Translation

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown superior capabilities in translating figurative language compared to neural machine translation (NMT) systems. However, the impact of different prompting methods and LLM-NMT combinations on idiom translation has yet to be thoroughly investigated. This paper introduces two parallel datasets of sentences containing idiomatic expressions for Persian$\rightarrow$English and English$\rightarrow$Persian translations, with Persian idioms sampled from our PersianIdioms resource, a collection of 2,200 idioms and their meanings. Using these datasets, we evaluate various open- and closed-source LLMs, NMT models, and their combinations. Translation quality is assessed through idiom translation accuracy and fluency. We also find that automatic evaluation methods like LLM-as-a-judge, BLEU and BERTScore are effective for comparing different aspects of model performance. Our experiments reveal that Claude-3.5-Sonnet delivers outstanding results in both translation directions. For English$\rightarrow$Persian, combining weaker LLMs with Google Translate improves results, while Persian$\rightarrow$English translations benefit from single prompts for simpler models and complex prompts for advanced ones.


Comparative Study of Multilingual Idioms and Similes in Large Language Models

arXiv.org Artificial Intelligence

This study addresses the gap in the literature concerning the comparative performance of LLMs in interpreting different types of figurative language across multiple languages. By evaluating LLMs using two multilingual datasets on simile and idiom interpretation, we explore the effectiveness of various prompt engineering strategies, including chain-of-thought, few-shot, and English translation prompts. We extend the language of these datasets to Persian as well by building two new evaluation sets. Our comprehensive assessment involves both closed-source (GPT-3.5, GPT-4o mini, Gemini 1.5), and open-source models (Llama 3.1, Qwen2), highlighting significant differences in performance across languages and figurative types. Our findings reveal that while prompt engineering methods are generally effective, their success varies by figurative type, language, and model. We also observe that open-source models struggle particularly with low-resource languages in similes. Additionally, idiom interpretation is nearing saturation for many languages, necessitating more challenging evaluations.


uTeBC-NLP at SemEval-2024 Task 9: Can LLMs be Lateral Thinkers?

arXiv.org Artificial Intelligence

Inspired by human cognition, Jiang et al.(2023c) create a benchmark for assessing LLMs' lateral thinking-thinking outside the box. Building upon this benchmark, we investigate how different prompting methods enhance LLMs' performance on this task to reveal their inherent power for outside-the-box thinking ability. Through participating in SemEval-2024, task 9, Sentence Puzzle sub-task, we explore prompt engineering methods: chain of thoughts (CoT) and direct prompting, enhancing with informative descriptions, and employing contextualizing prompts using a retrieval augmented generation (RAG) pipeline. Our experiments involve three LLMs including GPT-3.5, GPT-4, and Zephyr-7B-beta. We generate a dataset of thinking paths between riddles and options using GPT-4, validated by humans for quality. Findings indicate that compressed informative prompts enhance performance. Dynamic in-context learning enhances model performance significantly. Furthermore, fine-tuning Zephyr on our dataset enhances performance across other commonsense datasets, underscoring the value of innovative thinking.


Benchmarking Large Language Models for Persian: A Preliminary Study Focusing on ChatGPT

arXiv.org Artificial Intelligence

This paper explores the efficacy of large language models (LLMs) for Persian. While ChatGPT and consequent LLMs have shown remarkable performance in English, their efficiency for more low-resource languages remains an open question. We present the first comprehensive benchmarking study of LLMs across diverse Persian language tasks. Our primary focus is on GPT-3.5-turbo, but we also include GPT-4 and OpenChat-3.5 to provide a more holistic evaluation. Our assessment encompasses a diverse set of tasks categorized into classic, reasoning, and knowledge-based domains. To enable a thorough comparison, we evaluate LLMs against existing task-specific fine-tuned models. Given the limited availability of Persian datasets for reasoning tasks, we introduce two new benchmarks: one based on elementary school math questions and another derived from the entrance exams for 7th and 10th grades. Our findings reveal that while LLMs, especially GPT-4, excel in tasks requiring reasoning abilities and a broad understanding of general knowledge, they often lag behind smaller pre-trained models fine-tuned specifically for particular tasks. Additionally, we observe improved performance when test sets are translated to English before inputting them into GPT-3.5. These results highlight the significant potential for enhancing LLM performance in the Persian language. This is particularly noteworthy due to the unique attributes of Persian, including its distinct alphabet and writing styles.


Harnessing Dataset Cartography for Improved Compositional Generalization in Transformers

arXiv.org Artificial Intelligence

Neural networks have revolutionized language modeling and excelled in various downstream tasks. However, the extent to which these models achieve compositional generalization comparable to human cognitive abilities remains a topic of debate. While existing approaches in the field have mainly focused on novel architectures and alternative learning paradigms, we introduce a pioneering method harnessing the power of dataset cartography (Swayamdipta et al., 2020). By strategically identifying a subset of compositional generalization data using this approach, we achieve a remarkable improvement in model accuracy, yielding enhancements of up to 10% on CFQ and COGS datasets. Notably, our technique incorporates dataset cartography as a curriculum learning criterion, eliminating the need for hyperparameter tuning while consistently achieving superior performance. Our findings highlight the untapped potential of dataset cartography in unleashing the full capabilities of compositional generalization within Transformer models. Our code is available at https://github.com/cyberiada/cartography-for-compositionality.


LM-CPPF: Paraphrasing-Guided Data Augmentation for Contrastive Prompt-Based Few-Shot Fine-Tuning

arXiv.org Artificial Intelligence

In recent years, there has been significant progress in developing pre-trained language models for NLP. However, these models often struggle when fine-tuned on small datasets. To address this issue, researchers have proposed various adaptation approaches. Prompt-based tuning is arguably the most common way, especially for larger models. Previous research shows that adding contrastive learning to prompt-based fine-tuning is effective as it helps the model generate embeddings that are more distinguishable between classes, and it can also be more sample-efficient as the model learns from positive and negative examples simultaneously. One of the most important components of contrastive learning is data augmentation, but unlike computer vision, effective data augmentation for NLP is still challenging. This paper proposes LM-CPPF, Contrastive Paraphrasing-guided Prompt-based Fine-tuning of Language Models, which leverages prompt-based few-shot paraphrasing using generative language models, especially large language models such as GPT-3 and OPT-175B, for data augmentation. Our experiments on multiple text classification benchmarks show that this augmentation method outperforms other methods, such as easy data augmentation, back translation, and multiple templates.


Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

arXiv.org Artificial Intelligence

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.