Goto

Collaborating Authors

 Xu, Yuan


Latent Embedding Adaptation for Human Preference Alignment in Diffusion Planners

arXiv.org Artificial Intelligence

This work addresses the challenge of personalizing trajectories generated in automated decision-making systems by introducing a resource-efficient approach that enables rapid adaptation to individual users' preferences. Our method leverages a pretrained conditional diffusion model with Preference Latent Embeddings (PLE), trained on a large, reward-free offline dataset. The PLE serves as a compact representation for capturing specific user preferences. By adapting the pretrained model using our proposed preference inversion method, which directly optimizes the learnable PLE, we achieve superior alignment with human preferences compared to existing solutions like Reinforcement Learning from Human Feedback (RLHF) and Low-Rank Adaptation (LoRA). To better reflect practical applications, we create a benchmark experiment using real human preferences on diverse, high-reward trajectories.


CrowdHMTware: A Cross-level Co-adaptation Middleware for Context-aware Mobile DL Deployment

arXiv.org Artificial Intelligence

There are many deep learning (DL) powered mobile and wearable applications today continuously and unobtrusively sensing the ambient surroundings to enhance all aspects of human lives.To enable robust and private mobile sensing, DL models are often deployed locally on resource-constrained mobile devices using techniques such as model compression or offloading.However, existing methods, either front-end algorithm level (i.e. DL model compression/partitioning) or back-end scheduling level (i.e. operator/resource scheduling), cannot be locally online because they require offline retraining to ensure accuracy or rely on manually pre-defined strategies, struggle with dynamic adaptability.The primary challenge lies in feeding back runtime performance from the back-end level to the front-end level optimization decision. Moreover, the adaptive mobile DL model porting middleware with cross-level co-adaptation is less explored, particularly in mobile environments with diversity and dynamics. In response, we introduce CrowdHMTware, a dynamic context-adaptive DL model deployment middleware for heterogeneous mobile devices. It establishes an automated adaptation loop between cross-level functional components, i.e. elastic inference, scalable offloading, and model-adaptive engine, enhancing scalability and adaptability. Experiments with four typical tasks across 15 platforms and a real-world case study demonstrate that CrowdHMTware can effectively scale DL model, offloading, and engine actions across diverse platforms and tasks. It hides run-time system issues from developers, reducing the required developer expertise.


Digital Modeling of Massage Techniques and Reproduction by Robotic Arms

arXiv.org Artificial Intelligence

This paper explores the digital modeling and robotic reproduction of traditional Chinese medicine (TCM) massage techniques. We adopt an adaptive admittance control algorithm to optimize force and position control, ensuring safety and comfort. The paper analyzes key TCM techniques from kinematic and dynamic perspectives, and designs robotic systems to reproduce these massage techniques. The results demonstrate that the robot successfully mimics the characteristics of TCM massage, providing a foundation for integrating traditional therapy with modern robotics and expanding assistive therapy applications.


Investigating and Mitigating the Multimodal Hallucination Snowballing in Large Vision-Language Models

arXiv.org Artificial Intelligence

Though advanced in understanding visual information with human languages, Large Vision-Language Models (LVLMs) still suffer from multimodal hallucinations. A natural concern is that during multimodal interaction, the generated hallucinations could influence the LVLMs' subsequent generation. Thus, we raise a question: When presented with a query relevant to the previously generated hallucination, will LVLMs be misled and respond incorrectly, even though the ground visual information exists? To answer this, we propose a framework called MMHalSnowball to evaluate LVLMs' behaviors when encountering generated hallucinations, where LVLMs are required to answer specific visual questions within a curated hallucinatory conversation. Crucially, our experiment shows that the performance of open-source LVLMs drops by at least $31\%$, indicating that LVLMs are prone to accept the generated hallucinations and make false claims that they would not have supported without distractions. We term this phenomenon Multimodal Hallucination Snowballing. To mitigate this, we further propose a training-free method called Residual Visual Decoding, where we revise the output distribution of LVLMs with the one derived from the residual visual input, providing models with direct access to the visual information. Experiments show that our method can mitigate more than $24\%$ of the snowballed multimodal hallucination while maintaining capabilities.


Omnipotent Adversarial Training in the Wild

arXiv.org Artificial Intelligence

Adversarial training is an important topic in robust deep learning, but the community lacks attention to its practical usage. In this paper, we aim to resolve a real-world challenge, i.e., training a model on an imbalanced and noisy dataset to achieve high clean accuracy and adversarial robustness, with our proposed Omnipotent Adversarial Training (OAT) strategy. OAT consists of two innovative methodologies to address the imperfection in the training set. We first introduce an oracle into the adversarial training process to help the model learn a correct data-label conditional distribution. This carefully-designed oracle can provide correct label annotations for adversarial training. We further propose logits adjustment adversarial training to overcome the data imbalance issue, which can help the model learn a Bayes-optimal distribution. Our comprehensive evaluation results show that OAT outperforms other baselines by more than 20% clean accuracy improvement and 10% robust accuracy improvement under complex combinations of data imbalance and label noise scenarios. The code can be found in https://github.com/GuanlinLee/OAT.