Xu, Yang
Distributed Formation Shape Control of Identity-less Robot Swarms
Sun, Guibin, Xu, Yang, Liu, Kexin, Lü, Jinhu
Different from most of the formation strategies where robots require unique labels to identify topological neighbors to satisfy the predefined shape constraints, we here study the problem of identity-less distributed shape formation in homogeneous swarms, which is rarely studied in the literature. The absence of identities creates a unique challenge: how to design appropriate target formations and local behaviors that are suitable for identity-less formation shape control. To address this challenge, we propose the following novel results. First, to avoid using unique identities, we propose a dynamic formation description method and solve the formation consensus of robots in a locally distributed manner. Second, to handle identity-less distributed formations, we propose a fully distributed control law for homogeneous swarms based on locally sensed information. While the existing methods are applicable to simple cases where the target formation is stationary, ours can tackle more general maneuvering formations such as translation, rotation, or even shape deformation. Both numerical simulation and flight experiment are presented to verify the effectiveness and robustness of our proposed formation strategy.
Adaptive Parameter-Efficient Federated Fine-Tuning on Heterogeneous Devices
Liu, Jun, Liao, Yunming, Xu, Hongli, Xu, Yang, Liu, Jianchun, Qian, Chen
Federated fine-tuning (FedFT) has been proposed to fine-tune the pre-trained language models in a distributed manner. However, there are two critical challenges for efficient FedFT in practical applications, i.e., resource constraints and system heterogeneity. Existing works rely on parameter-efficient fine-tuning methods, e.g., low-rank adaptation (LoRA), but with major limitations. Herein, based on the inherent characteristics of FedFT, we observe that LoRA layers with higher ranks added close to the output help to save resource consumption while achieving comparable fine-tuning performance. Then we propose a novel LoRA-based FedFT framework, termed LEGEND, which faces the difficulty of determining the number of LoRA layers (called, LoRA depth) and the rank of each LoRA layer (called, rank distribution). We analyze the coupled relationship between LoRA depth and rank distribution, and design an efficient LoRA configuration algorithm for heterogeneous devices, thereby promoting fine-tuning efficiency. Extensive experiments are conducted on a physical platform with 80 commercial devices. The results show that LEGEND can achieve a speedup of 1.5-2.8$\times$ and save communication costs by about 42.3% when achieving the target accuracy, compared to the advanced solutions.
Tracking the Feature Dynamics in LLM Training: A Mechanistic Study
Understanding training dynamics and feature evolution is crucial for the mechanistic interpretability of large language models (LLMs). Although sparse autoencoders (SAEs) have been used to identify features within LLMs, a clear picture of how these features evolve during training remains elusive. In this study, we: (1) introduce SAE-Track, a method to efficiently obtain a continual series of SAEs; (2) formulate the process of feature formation and conduct a mechanistic analysis; and (3) analyze and visualize feature drift during training. Our work provides new insights into the dynamics of features in LLMs, enhancing our understanding of training mechanisms and feature evolution.
Can Large Language Models Understand You Better? An MBTI Personality Detection Dataset Aligned with Population Traits
Li, Bohan, Guan, Jiannan, Dou, Longxu, Feng, Yunlong, Wang, Dingzirui, Xu, Yang, Wang, Enbo, Chen, Qiguang, Wang, Bichen, Xu, Xiao, Zhang, Yimeng, Qin, Libo, Zhao, Yanyan, Zhu, Qingfu, Che, Wanxiang
The Myers-Briggs Type Indicator (MBTI) is one of the most influential personality theories reflecting individual differences in thinking, feeling, and behaving. MBTI personality detection has garnered considerable research interest and has evolved significantly over the years. However, this task tends to be overly optimistic, as it currently does not align well with the natural distribution of population personality traits. Specifically, (1) the self-reported labels in existing datasets result in incorrect labeling issues, and (2) the hard labels fail to capture the full range of population personality distributions. In this paper, we optimize the task by constructing MBTIBench, the first manually annotated high-quality MBTI personality detection dataset with soft labels, under the guidance of psychologists. As for the first challenge, MBTIBench effectively solves the incorrect labeling issues, which account for 29.58% of the data. As for the second challenge, we estimate soft labels by deriving the polarity tendency of samples. The obtained soft labels confirm that there are more people with non-extreme personality traits. Experimental results not only highlight the polarized predictions and biases in LLMs as key directions for future research, but also confirm that soft labels can provide more benefits to other psychological tasks than hard labels. The code and data are available at https://github.com/Personality-NLP/MbtiBench.
Multi-robot autonomous 3D reconstruction using Gaussian splatting with Semantic guidance
Zeng, Jing, Ye, Qi, Liu, Tianle, Xu, Yang, Li, Jin, Xu, Jinming, Li, Liang, Chen, Jiming
Implicit neural representations and 3D Gaussian splatting (3DGS) have shown great potential for scene reconstruction. Recent studies have expanded their applications in autonomous reconstruction through task assignment methods. However, these methods are mainly limited to single robot, and rapid reconstruction of large-scale scenes remains challenging. Additionally, task-driven planning based on surface uncertainty is prone to being trapped in local optima. To this end, we propose the first 3DGS-based centralized multi-robot autonomous 3D reconstruction framework. To further reduce time cost of task generation and improve reconstruction quality, we integrate online open-vocabulary semantic segmentation with surface uncertainty of 3DGS, focusing view sampling on regions with high instance uncertainty. Finally, we develop a multi-robot collaboration strategy with mode and task assignments improving reconstruction quality while ensuring planning efficiency. Our method demonstrates the highest reconstruction quality among all planning methods and superior planning efficiency compared to existing multi-robot methods. We deploy our method on multiple robots, and results show that it can effectively plan view paths and reconstruct scenes with high quality.
OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models
Huang, Siming, Cheng, Tianhao, Liu, J. K., Hao, Jiaran, Song, Liuyihan, Xu, Yang, Yang, J., Liu, J. H., Zhang, Chenchen, Chai, Linzheng, Yuan, Ruifeng, Zhang, Zhaoxiang, Fu, Jie, Liu, Qian, Zhang, Ge, Wang, Zili, Qi, Yuan, Xu, Yinghui, Chu, Wei
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems. While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs suitable for rigorous scientific investigation, particularly those with reproducible data processing pipelines and transparent training protocols, remain limited. The scarcity is due to various challenges, including resource constraints, ethical considerations, and the competitive advantages of keeping models advanced. To address the gap, we introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community. Unlike most prior efforts, we release not only model weights and inference code, but also the reproducible training data, complete data processing pipeline, rigorous experimental ablation results, and detailed training protocols for open scientific research. Through this comprehensive release, we identify the key ingredients for building a top-tier code LLM: (1) code optimized heuristic rules for data cleaning and methods for data deduplication, (2) recall of text corpus related to code and (3) high-quality synthetic data in both annealing and supervised fine-tuning stages. By offering this level of openness, we aim to broaden access to all aspects of a top-tier code LLM, with OpenCoder serving as both a powerful model and an open foundation to accelerate research, and enable reproducible advancements in code AI.
Word reuse and combination support efficient communication of emerging concepts
Xu, Aotao, Kemp, Charles, Frermann, Lea, Xu, Yang
A key function of the lexicon is to express novel concepts as they emerge over time through a process known as lexicalization. The most common lexicalization strategies are the reuse and combination of existing words, but they have typically been studied separately in the areas of word meaning extension and word formation. Here we offer an information-theoretic account of how both strategies are constrained by a fundamental tradeoff between competing communicative pressures: word reuse tends to preserve the average length of word forms at the cost of less precision, while word combination tends to produce more informative words at the expense of greater word length. We test our proposal against a large dataset of reuse items and compounds that appeared in English, French and Finnish over the past century. We find that these historically emerging items achieve higher levels of communicative efficiency than hypothetical ways of constructing the lexicon, and both literal reuse items and compounds tend to be more efficient than their non-literal counterparts. These results suggest that reuse and combination are both consistent with a unified account of lexicalization grounded in the theory of efficient communication.
Maximizing User Connectivity in AI-Enabled Multi-UAV Networks: A Distributed Strategy Generalized to Arbitrary User Distributions
Li, Bowei, Xu, Yang, Zhang, Ran, Jiang, null, Xie, null, Wang, Miao
Deep reinforcement learning (DRL) has been extensively applied to Multi-Unmanned Aerial Vehicle (UAV) network (MUN) to effectively enable real-time adaptation to complex, time-varying environments. Nevertheless, most of the existing works assume a stationary user distribution (UD) or a dynamic one with predicted patterns. Such considerations may make the UD-specific strategies insufficient when a MUN is deployed in unknown environments. To this end, this paper investigates distributed user connectivity maximization problem in a MUN with generalization to arbitrary UDs. Specifically, the problem is first formulated into a time-coupled combinatorial nonlinear non-convex optimization with arbitrary underlying UDs. To make the optimization tractable, a multi-agent CNN-enhanced deep Q learning (MA-CDQL) algorithm is proposed. The algorithm integrates a ResNet-based CNN to the policy network to analyze the input UD in real time and obtain optimal decisions based on the extracted high-level UD features. To improve the learning efficiency and avoid local optimums, a heatmap algorithm is developed to transform the raw UD to a continuous density map. The map will be part of the true input to the policy network. Simulations are conducted to demonstrate the efficacy of UD heatmaps and the proposed algorithm in maximizing user connectivity as compared to K-means methods.
Stealthy Jailbreak Attacks on Large Language Models via Benign Data Mirroring
Mu, Honglin, He, Han, Zhou, Yuxin, Feng, Yunlong, Xu, Yang, Qin, Libo, Shi, Xiaoming, Liu, Zeming, Han, Xudong, Shi, Qi, Zhu, Qingfu, Che, Wanxiang
Large language model (LLM) safety is a critical issue, with numerous studies employing red team testing to enhance model security. Among these, jailbreak methods explore potential vulnerabilities by crafting malicious prompts that induce model outputs contrary to safety alignments. Existing black-box jailbreak methods often rely on model feedback, repeatedly submitting queries with detectable malicious instructions during the attack search process. Although these approaches are effective, the attacks may be intercepted by content moderators during the search process. We propose an improved transfer attack method that guides malicious prompt construction by locally training a mirror model of the target black-box model through benign data distillation. This method offers enhanced stealth, as it does not involve submitting identifiable malicious instructions to the target model during the search phase. Our approach achieved a maximum attack success rate of 92%, or a balanced value of 80% with an average of 1.5 detectable jailbreak queries per sample against GPT-3.5 Turbo on a subset of AdvBench. These results underscore the need for more robust defense mechanisms.
Network scaling and scale-driven loss balancing for intelligent poroelastography
Xu, Yang, Pourahmadian, Fatemeh
A deep learning framework is developed for multiscale characterization of poroelastic media from full waveform data which is known as poroelastography. Special attention is paid to heterogeneous environments whose multiphase properties may drastically change across several scales. Described in space-frequency, the data takes the form of focal solid displacement and pore pressure fields in various neighborhoods furnished either by reconstruction from remote data or direct measurements depending on the application. The objective is to simultaneously recover the six hydromechanical properties germane to Biot equations and their spatial distribution in a robust and efficient manner. Two major challenges impede direct application of existing state-of-the-art techniques for this purpose: (i) the sought-for properties belong to vastly different and potentially uncertain scales, and~(ii) the loss function is multi-objective and multi-scale (both in terms of its individual components and the total loss). To help bridge the gap, we propose the idea of \emph{network scaling} where the neural property maps are constructed by unit shape functions composed into a scaling layer. In this model, the unknown network parameters (weights and biases) remain of O(1) during training. This forms the basis for explicit scaling of the loss components and their derivatives with respect to the network parameters. Thereby, we propose the physics-based \emph{dynamic scaling} approach for adaptive loss balancing. The idea is first presented in a generic form for multi-physics and multi-scale PDE systems, and then applied through a set of numerical experiments to poroelastography. The results are presented along with reconstructions by way of gradient normalization (GradNorm) and Softmax adaptive weights (SoftAdapt) for loss balancing. A comparative analysis of the methods and corresponding results is provided.