Xu, Xiangyu
T3: Multi-modal Tailless Triple-Flapping-Wing Robot for Efficient Aerial and Terrestrial Locomotion
Xu, Xiangyu, Zheng, Zhi, Wang, Jin, Chen, Yikai, Huang, Jingyang, Wu, Ruixin, Yu, Huan, Lu, Guodong
-- Flapping-wing robots offer great versatility; however, achieving efficient multi-modal locomotion remains challenging. This paper presents the design, modeling, and experimentation of T3, a novel tailless flapping-wing robot with three pairs of independently actuated wings. Inspired by juvenile water striders, T3 incorporates bio-inspired elastic passive legs that effectively transmit vibrations generated during wing flapping, enabling ground movement without additional motors. An SE(3)-based controller ensures precise trajectory tracking and seamless mode transition. T o validate T3's effectiveness, we developed a fully functional prototype and conducted targeted modeling, real-world experiments, and benchmark comparisons. The results demonstrate the robot's and controller's outstanding performance, underscoring the potential of multi-modal flapping-wing technologies for future aerial-ground robotic applications.
ActiveGAMER: Active GAussian Mapping through Efficient Rendering
Chen, Liyan, Zhan, Huangying, Chen, Kevin, Xu, Xiangyu, Yan, Qingan, Cai, Changjiang, Xu, Yi
We introduce ActiveGAMER, an active mapping system that utilizes 3D Gaussian Splatting (3DGS) to achieve high-quality, real-time scene mapping and exploration. Unlike traditional NeRF-based methods, which are computationally demanding and restrict active mapping performance, our approach leverages the efficient rendering capabilities of 3DGS, allowing effective and efficient exploration in complex environments. The core of our system is a rendering-based information gain module that dynamically identifies the most informative viewpoints for next-best-view planning, enhancing both geometric and photometric reconstruction accuracy. ActiveGAMER also integrates a carefully balanced framework, combining coarse-to-fine exploration, post-refinement, and a global-local keyframe selection strategy to maximize reconstruction completeness and fidelity. Our system autonomously explores and reconstructs environments with state-of-the-art geometric and photometric accuracy and completeness, significantly surpassing existing approaches in both aspects. Extensive evaluations on benchmark datasets such as Replica and MP3D highlight ActiveGAMER's effectiveness in active mapping tasks.
EFTViT: Efficient Federated Training of Vision Transformers with Masked Images on Resource-Constrained Edge Devices
Wu, Meihan, Chang, Tao, Miao, Cui, Zhou, Jie, Li, Chun, Xu, Xiangyu, Li, Ming, Wang, Xiaodong
Federated learning research has recently shifted from Convolutional Neural Networks (CNNs) to Vision Transformers (ViTs) due to their superior capacity. ViTs training demands higher computational resources due to the lack of 2D inductive biases inherent in CNNs. However, efficient federated training of ViTs on resource-constrained edge devices remains unexplored in the community. In this paper, we propose EFTViT, a hierarchical federated framework that leverages masked images to enable efficient, full-parameter training on resource-constrained edge devices, offering substantial benefits for learning on heterogeneous data. In general, we patchify images and randomly mask a portion of the patches, observing that excluding them from training has minimal impact on performance while substantially reducing computation costs and enhancing data content privacy protection. Specifically, EFTViT comprises a series of lightweight local modules and a larger global module, updated independently on clients and the central server, respectively. The local modules are trained on masked image patches, while the global module is trained on intermediate patch features uploaded from the local client, balanced through a proposed median sampling strategy to erase client data distribution privacy. We analyze the computational complexity and privacy protection of EFTViT. Extensive experiments on popular benchmarks show that EFTViT achieves up to 28.17% accuracy improvement, reduces local training computational cost by up to 2.8$\times$, and cuts local training time by up to 4.4$\times$ compared to existing methods.
Instant3D: Instant Text-to-3D Generation
Li, Ming, Zhou, Pan, Liu, Jia-Wei, Keppo, Jussi, Lin, Min, Yan, Shuicheng, Xu, Xiangyu
Text-to-3D generation has attracted much attention from the computer vision community. Existing methods mainly optimize a neural field from scratch for each text prompt, relying on heavy and repetitive training cost which impedes their practical deployment. In this paper, we propose a novel framework for fast text-to-3D generation, dubbed Instant3D. Once trained, Instant3D is able to create a 3D object for an unseen text prompt in less than one second with a single run of a feedforward network. We achieve this remarkable speed by devising a new network that directly constructs a 3D triplane from a text prompt. The core innovation of our Instant3D lies in our exploration of strategies to effectively inject text conditions into the network. In particular, we propose to combine three key mechanisms: cross-attention, style injection, and token-to-plane transformation, which collectively ensure precise alignment of the output with the input text. Furthermore, we propose a simple yet effective activation function, the scaled-sigmoid, to replace the original sigmoid function, which speeds up the training convergence by more than ten times. Finally, to address the Janus (multi-head) problem in 3D generation, we propose an adaptive Perp-Neg algorithm that can dynamically adjust its concept negation scales according to the severity of the Janus problem during training, effectively reducing the multi-head effect. Extensive experiments on a wide variety of benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods both qualitatively and quantitatively, while achieving significantly better efficiency. The code, data, and models are available at https://github.com/ming1993li/Instant3DCodes.
SMPLer: Taming Transformers for Monocular 3D Human Shape and Pose Estimation
Xu, Xiangyu, Liu, Lijuan, Yan, Shuicheng
Existing Transformers for monocular 3D human shape and pose estimation typically have a quadratic computation and memory complexity with respect to the feature length, which hinders the exploitation of fine-grained information in high-resolution features that is beneficial for accurate reconstruction. In this work, we propose an SMPL-based Transformer framework (SMPLer) to address this issue. SMPLer incorporates two key ingredients: a decoupled attention operation and an SMPL-based target representation, which allow effective utilization of high-resolution features in the Transformer. In addition, based on these two designs, we also introduce several novel modules including a multi-scale attention and a joint-aware attention to further boost the reconstruction performance. Extensive experiments demonstrate the effectiveness of SMPLer against existing 3D human shape and pose estimation methods both quantitatively and qualitatively. Notably, the proposed algorithm achieves an MPJPE of 45.2 mm on the Human3.6M dataset, improving upon Mesh Graphormer by more than 10% with fewer than one-third of the parameters. Code and pretrained models are available at https://github.com/xuxy09/SMPLer.
NARUTO: Neural Active Reconstruction from Uncertain Target Observations
Feng, Ziyue, Zhan, Huangying, Chen, Zheng, Yan, Qingan, Xu, Xiangyu, Cai, Changjiang, Li, Bing, Zhu, Qilun, Xu, Yi
We present NARUTO, a neural active reconstruction system that combines a hybrid neural representation with uncertainty learning, enabling high-fidelity surface reconstruction. Our approach leverages a multi-resolution hash-grid as the mapping backbone, chosen for its exceptional convergence speed and capacity to capture high-frequency local features.The centerpiece of our work is the incorporation of an uncertainty learning module that dynamically quantifies reconstruction uncertainty while actively reconstructing the environment. By harnessing learned uncertainty, we propose a novel uncertainty aggregation strategy for goal searching and efficient path planning. Our system autonomously explores by targeting uncertain observations and reconstructs environments with remarkable completeness and fidelity. We also demonstrate the utility of this uncertainty-aware approach by enhancing SOTA neural SLAM systems through an active ray sampling strategy. Extensive evaluations of NARUTO in various environments, using an indoor scene simulator, confirm its superior performance and state-of-the-art status in active reconstruction, as evidenced by its impressive results on benchmark datasets like Replica and MP3D.
GoodDrag: Towards Good Practices for Drag Editing with Diffusion Models
Zhang, Zewei, Liu, Huan, Chen, Jun, Xu, Xiangyu
In this paper, we introduce GoodDrag, a novel approach to improve the stability and image quality of drag editing. Unlike existing methods that struggle with accumulated perturbations and often result in distortions, GoodDrag introduces an AlDD framework that alternates between drag and denoising operations within the diffusion process, effectively improving the fidelity of the result. We also propose an information-preserving motion supervision operation that maintains the original features of the starting point for precise manipulation and artifact reduction. In addition, we contribute to the benchmarking of drag editing by introducing a new dataset, Drag100, and developing dedicated quality assessment metrics, Dragging Accuracy Index and Gemini Score, utilizing Large Multimodal Models. Extensive experiments demonstrate that the proposed GoodDrag compares favorably against the state-of-the-art approaches both qualitatively and quantitatively. The project page is https://gooddrag.github.io.
Towards Garment Sewing Pattern Reconstruction from a Single Image
Liu, Lijuan, Xu, Xiangyu, Lin, Zhijie, Liang, Jiabin, Yan, Shuicheng
Garment sewing pattern represents the intrinsic rest shape of a garment, and is the core for many applications like fashion design, virtual try-on, and digital avatars. In this work, we explore the challenging problem of recovering garment sewing patterns from daily photos for augmenting these applications. To solve the problem, we first synthesize a versatile dataset, named SewFactory, which consists of around 1M images and ground-truth sewing patterns for model training and quantitative evaluation. SewFactory covers a wide range of human poses, body shapes, and sewing patterns, and possesses realistic appearances thanks to the proposed human texture synthesis network. Then, we propose a two-level Transformer network called Sewformer, which significantly improves the sewing pattern prediction performance. Extensive experiments demonstrate that the proposed framework is effective in recovering sewing patterns and well generalizes to casually-taken human photos. Code, dataset, and pre-trained models are available at: https://sewformer.github.io.
3D Human Texture Estimation from a Single Image with Transformers
Xu, Xiangyu, Loy, Chen Change
We propose a Transformer-based framework for 3D human texture estimation from a single image. The proposed Transformer is able to effectively exploit the global information of the input image, overcoming the limitations of existing methods that are solely based on convolutional neural networks. In addition, we also propose a mask-fusion strategy to combine the advantages of the RGB-based and texture-flow-based models. We further introduce a part-style loss to help reconstruct high-fidelity colors without introducing unpleasant artifacts. Extensive experiments demonstrate the effectiveness of the proposed method against state-of-the-art 3D human texture estimation approaches both quantitatively and qualitatively.
3D Human Pose, Shape and Texture from Low-Resolution Images and Videos
Xu, Xiangyu, Chen, Hao, Moreno-Noguer, Francesc, Jeni, Laszlo A., De la Torre, Fernando
3D human pose and shape estimation from monocular images has been an active research area in computer vision. Existing deep learning methods for this task rely on high-resolution input, which however, is not always available in many scenarios such as video surveillance and sports broadcasting. Two common approaches to deal with low-resolution images are applying super-resolution techniques to the input, which may result in unpleasant artifacts, or simply training one model for each resolution, which is impractical in many realistic applications. To address the above issues, this paper proposes a novel algorithm called RSC-Net, which consists of a Resolution-aware network, a Self-supervision loss, and a Contrastive learning scheme. The proposed method is able to learn 3D body pose and shape across different resolutions with one single model. The self-supervision loss enforces scale-consistency of the output, and the contrastive learning scheme enforces scale-consistency of the deep features. We show that both these new losses provide robustness when learning in a weakly-supervised manner. Moreover, we extend the RSC-Net to handle low-resolution videos and apply it to reconstruct textured 3D pedestrians from low-resolution input. Extensive experiments demonstrate that the RSC-Net can achieve consistently better results than the state-of-the-art methods for challenging low-resolution images.