Goto

Collaborating Authors

 Xu, Qiongkai


ALGEN: Few-shot Inversion Attacks on Textual Embeddings using Alignment and Generation

arXiv.org Artificial Intelligence

With the growing popularity of Large Language Models (LLMs) and vector databases, private textual data is increasingly processed and stored as numerical embeddings. However, recent studies have proven that such embeddings are vulnerable to inversion attacks, where original text is reconstructed to reveal sensitive information. Previous research has largely assumed access to millions of sentences to train attack models, e.g., through data leakage or nearly unrestricted API access. With our method, a single data point is sufficient for a partially successful inversion attack. With as little as 1k data samples, performance reaches an optimum across a range of black-box encoders, without training on leaked data. We present a Few-shot Textual Embedding Inversion Attack using ALignment and GENeration (ALGEN), by aligning victim embeddings to the attack space and using a generative model to reconstruct text. We find that ALGEN attacks can be effectively transferred across domains and languages, revealing key information. We further examine a variety of defense mechanisms against ALGEN, and find that none are effective, highlighting the vulnerabilities posed by inversion attacks. By significantly lowering the cost of inversion and proving that embedding spaces can be aligned through one-step optimization, we establish a new textual embedding inversion paradigm with broader applications for embedding alignment in NLP.


Cut the Deadwood Out: Post-Training Model Purification with Selective Module Substitution

arXiv.org Artificial Intelligence

The success of DNNs often depends on training with large-scale datasets, but building such datasets is both expensive and challenging. Consequently, public datasets from open-source platforms like HuggingFace have become popular, posing significant risks of data poisoning attacks. Existing backdoor defenses in NLP primarily focus on identifying and removing poisoned samples; however, purifying a backdoored model with these sample-cleaning approaches typically requires expensive retraining. Therefore, we propose Greedy Module Substitution (GMS), which identifies and substitutes ''deadwood'' modules (i.e., components critical to backdoor pathways) in a backdoored model to purify it. Our method relaxes the common dependency of prior model purification methods on clean datasets or clean auxiliary models. When applied to RoBERTa-large under backdoor attacks, GMS demonstrates strong effectiveness across various settings, particularly against widely recognized challenging attacks like LWS, achieving a post-purification attack success rate (ASR) of 9.7% on SST-2 compared to 58.8% for the best baseline approach.


Overview of the 2024 ALTA Shared Task: Detect Automatic AI-Generated Sentences for Human-AI Hybrid Articles

arXiv.org Artificial Intelligence

While this By examining the accuracy of identifying AIgenerated collaboration offers exciting opportunities, it also sentences within texts that combine human introduces challenges -- particularly in distinguishing and AI-authored content, we aim to develop between human-authored and AI-generated more sophisticated and effective detection methods content within a single document.


IDT: Dual-Task Adversarial Attacks for Privacy Protection

arXiv.org Artificial Intelligence

Natural language processing (NLP) models may leak private information in different ways, including membership inference, reconstruction or attribute inference attacks. Sensitive information may not be explicit in the text, but hidden in underlying writing characteristics. Methods to protect privacy can involve using representations inside models that are demonstrated not to detect sensitive attributes or -- for instance, in cases where users might not trust a model, the sort of scenario of interest here -- changing the raw text before models can have access to it. The goal is to rewrite text to prevent someone from inferring a sensitive attribute (e.g. the gender of the author, or their location by the writing style) whilst keeping the text useful for its original intention (e.g. the sentiment of a product review). The few works tackling this have focused on generative techniques. However, these often create extensively different texts from the original ones or face problems such as mode collapse. This paper explores a novel adaptation of adversarial attack techniques to manipulate a text to deceive a classifier w.r.t one task (privacy) whilst keeping the predictions of another classifier trained for another task (utility) unchanged. We propose IDT, a method that analyses predictions made by auxiliary and interpretable models to identify which tokens are important to change for the privacy task, and which ones should be kept for the utility task. We evaluate different datasets for NLP suitable for different tasks. Automatic and human evaluations show that IDT retains the utility of text, while also outperforming existing methods when deceiving a classifier w.r.t privacy task.


WARDEN: Multi-Directional Backdoor Watermarks for Embedding-as-a-Service Copyright Protection

arXiv.org Artificial Intelligence

Embedding as a Service (EaaS) has become a widely adopted solution, which offers feature extraction capabilities for addressing various downstream tasks in Natural Language Processing (NLP). Prior studies have shown that EaaS can be prone to model extraction attacks; nevertheless, this concern could be mitigated by adding backdoor watermarks to the text embeddings and subsequently verifying the attack models post-publication. Through the analysis of the recent watermarking strategy for EaaS, EmbMarker, we design a novel CSE (Clustering, Selection, Elimination) attack that removes the backdoor watermark while maintaining the high utility of embeddings, indicating that the previous watermarking approach can be breached. In response to this new threat, we propose a new protocol to make the removal of watermarks more challenging by incorporating multiple possible watermark directions. Our defense approach, WARDEN, notably increases the stealthiness of watermarks and has been empirically shown to be effective against CSE attack.


NAP^2: A Benchmark for Naturalness and Privacy-Preserving Text Rewriting by Learning from Human

arXiv.org Artificial Intelligence

Increasing concerns about privacy leakage issues in academia and industry arise when employing NLP models from third-party providers to process sensitive texts. To protect privacy before sending sensitive data to those models, we suggest sanitizing sensitive text using two common strategies used by humans: i) deleting sensitive expressions, and ii) obscuring sensitive details by abstracting them. To explore the issues and develop a tool for text rewriting, we curate the first corpus, coined NAP^2, through both crowdsourcing and the use of large language models (LLMs). Compared to the prior works based on differential privacy, which lead to a sharp drop in information utility and unnatural texts, the human-inspired approaches result in more natural rewrites and offer an improved balance between privacy protection and data utility, as demonstrated by our extensive experiments.


Seeing the Forest through the Trees: Data Leakage from Partial Transformer Gradients

arXiv.org Artificial Intelligence

Recent studies have shown that distributed machine learning is vulnerable to gradient inversion attacks, where private training data can be reconstructed by analyzing the gradients of the models shared in training. Previous attacks established that such reconstructions are possible using gradients from all parameters in the entire models. However, we hypothesize that most of the involved modules, or even their sub-modules, are at risk of training data leakage, and we validate such vulnerabilities in various intermediate layers of language models. Our extensive experiments reveal that gradients from a single Transformer layer, or even a single linear component with 0.54% parameters, are susceptible to training data leakage. Additionally, we show that applying differential privacy on gradients during training offers limited protection against the novel vulnerability of data disclosure.


Here's a Free Lunch: Sanitizing Backdoored Models with Model Merge

arXiv.org Artificial Intelligence

The democratization of pre-trained language models through open-source initiatives has rapidly advanced innovation and expanded access to cutting-edge technologies. However, this openness also brings significant security risks, including backdoor attacks, where hidden malicious behaviors are triggered by specific inputs, compromising natural language processing (NLP) system integrity and reliability. This paper suggests that merging a backdoored model with other homogeneous models can significantly remediate backdoor vulnerabilities even if such models are not entirely secure. In our experiments, we verify our hypothesis on various models (BERT-Base, RoBERTa-Large, Llama2-7B, and Mistral-7B) and datasets (SST-2, OLID, AG News, and QNLI). Compared to multiple advanced defensive approaches, our method offers an effective and efficient inference-stage defense against backdoor attacks on classification and instruction-tuned tasks without additional resources or specific knowledge. Our approach consistently outperforms recent advanced baselines, leading to an average of about 75% reduction in the attack success rate. Since model merging has been an established approach for improving model performance, the extra advantage it provides regarding defense can be seen as a cost-free bonus.


SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks

arXiv.org Artificial Intelligence

Modern NLP models are often trained on public datasets drawn from diverse sources, rendering them vulnerable to data poisoning attacks. These attacks can manipulate the model's behavior in ways engineered by the attacker. One such tactic involves the implantation of backdoors, achieved by poisoning specific training instances with a textual trigger and a target class label. Several strategies have been proposed to mitigate the risks associated with backdoor attacks by identifying and removing suspected poisoned examples. However, we observe that these strategies fail to offer effective protection against several advanced backdoor attacks. To remedy this deficiency, we propose a novel defensive mechanism that first exploits training dynamics to identify poisoned samples with high precision, followed by a label propagation step to improve recall and thus remove the majority of poisoned instances. Compared with recent advanced defense methods, our method considerably reduces the success rates of several backdoor attacks while maintaining high classification accuracy on clean test sets.


Transferring Troubles: Cross-Lingual Transferability of Backdoor Attacks in LLMs with Instruction Tuning

arXiv.org Artificial Intelligence

The implications of backdoor attacks on English-centric large language models (LLMs) have been widely examined - such attacks can be achieved by embedding malicious behaviors during training and activated under specific conditions that trigger malicious outputs. However, the impact of backdoor attacks on multilingual models remains under-explored. Our research focuses on cross-lingual backdoor attacks against multilingual LLMs, particularly investigating how poisoning the instruction-tuning data in one or two languages can affect the outputs in languages whose instruction-tuning data was not poisoned. Despite its simplicity, our empirical analysis reveals that our method exhibits remarkable efficacy in models like mT5, BLOOM, and GPT-3.5-turbo, with high attack success rates, surpassing 95% in several languages across various scenarios. Alarmingly, our findings also indicate that larger models show increased susceptibility to transferable cross-lingual backdoor attacks, which also applies to LLMs predominantly pre-trained on English data, such as Llama2, Llama3, and Gemma. Moreover, our experiments show that triggers can still work even after paraphrasing, and the backdoor mechanism proves highly effective in cross-lingual response settings across 25 languages, achieving an average attack success rate of 50%. Our study aims to highlight the vulnerabilities and significant security risks present in current multilingual LLMs, underscoring the emergent need for targeted security measures.