Xu, Guowen
CP-Guard+: A New Paradigm for Malicious Agent Detection and Defense in Collaborative Perception
Hu, Senkang, Tao, Yihang, Fang, Zihan, Xu, Guowen, Deng, Yiqin, Kwong, Sam, Fang, Yuguang
Collaborative perception (CP) is a promising method for safe connected and autonomous driving, which enables multiple vehicles to share sensing information to enhance perception performance. However, compared with single-vehicle perception, the openness of a CP system makes it more vulnerable to malicious attacks that can inject malicious information to mislead the perception of an ego vehicle, resulting in severe risks for safe driving. To mitigate such vulnerability, we first propose a new paradigm for malicious agent detection that effectively identifies malicious agents at the feature level without requiring verification of final perception results, significantly reducing computational overhead. Building on this paradigm, we introduce CP-GuardBench, the first comprehensive dataset provided to train and evaluate various malicious agent detection methods for CP systems. Furthermore, we develop a robust defense method called CP-Guard+, which enhances the margin between the representations of benign and malicious features through a carefully designed Dual-Centered Contrastive Loss (DCCLoss). Finally, we conduct extensive experiments on both CP-GuardBench and V2X-Sim, and demonstrate the superiority of CP-Guard+.
Rethinking Membership Inference Attacks Against Transfer Learning
Wu, Cong, Chen, Jing, Fang, Qianru, He, Kun, Zhao, Ziming, Ren, Hao, Xu, Guowen, Liu, Yang, Xiang, Yang
Transfer learning, successful in knowledge translation across related tasks, faces a substantial privacy threat from membership inference attacks (MIAs). These attacks, despite posing significant risk to ML model's training data, remain limited-explored in transfer learning. The interaction between teacher and student models in transfer learning has not been thoroughly explored in MIAs, potentially resulting in an under-examined aspect of privacy vulnerabilities within transfer learning. In this paper, we propose a new MIA vector against transfer learning, to determine whether a specific data point was used to train the teacher model while only accessing the student model in a white-box setting. Our method delves into the intricate relationship between teacher and student models, analyzing the discrepancies in hidden layer representations between the student model and its shadow counterpart. These identified differences are then adeptly utilized to refine the shadow model's training process and to inform membership inference decisions effectively. Our method, evaluated across four datasets in diverse transfer learning tasks, reveals that even when an attacker only has access to the student model, the teacher model's training data remains susceptible to MIAs. We believe our work unveils the unexplored risk of membership inference in transfer learning.
CP-Guard: Malicious Agent Detection and Defense in Collaborative Bird's Eye View Perception
Hu, Senkang, Tao, Yihang, Xu, Guowen, Deng, Yiqin, Chen, Xianhao, Fang, Yuguang, Kwong, Sam
Collaborative Perception (CP) has shown a promising technique for autonomous driving, where multiple connected and autonomous vehicles (CAVs) share their perception information to enhance the overall perception performance and expand the perception range. However, in CP, ego CAV needs to receive messages from its collaborators, which makes it easy to be attacked by malicious agents. For example, a malicious agent can send harmful information to the ego CAV to mislead it. To address this critical issue, we propose a novel method, \textbf{CP-Guard}, a tailored defense mechanism for CP that can be deployed by each agent to accurately detect and eliminate malicious agents in its collaboration network. Our key idea is to enable CP to reach a consensus rather than a conflict against the ego CAV's perception results. Based on this idea, we first develop a probability-agnostic sample consensus (PASAC) method to effectively sample a subset of the collaborators and verify the consensus without prior probabilities of malicious agents. Furthermore, we define a collaborative consistency loss (CCLoss) to capture the discrepancy between the ego CAV and its collaborators, which is used as a verification criterion for consensus. Finally, we conduct extensive experiments in collaborative bird's eye view (BEV) tasks and our results demonstrate the effectiveness of our CP-Guard.
Channel-Aware Throughput Maximization for Cooperative Data Fusion in CAV
An, Haonan, Fang, Zhengru, Zhang, Yuang, Hu, Senkang, Chen, Xianhao, Xu, Guowen, Fang, Yuguang
--Connected and autonomous vehicles (CA Vs) have garnered significant attention due to their extended perception range and enhanced sensing coverage. T o address challenges such as blind spots and obstructions, CA Vs employ vehicle-to-vehicle (V2V) communications to aggregate sensory data from surrounding vehicles. However, cooperative perception is often constrained by the limitations of achievable network throughput and channel quality. In this paper, we propose a channel-aware throughput maximization approach to facilitate CA V data fusion, leveraging a self-supervised autoencoder for adaptive data compression. We formulate the problem as a mixed integer programming (MIP) model, which we decompose into two sub-problems to derive optimal data rate and compression ratio solutions under given link conditions. An autoencoder is then trained to minimize bitrate with the determined compression ratio, and a fine-tuning strategy is employed to further reduce spectrum resource consumption. Experimental evaluation on the OpenCOOD platform demonstrates the effectiveness of our proposed algorithm, showing more than 20.19% improvement in network throughput and a 9.38% increase in average precision (AP@IoU) compared to state-of-the-art methods, with an optimal latency of 19.99 ms. Index T erms --Cooperative perception, throughput optimization, connected and autonomous driving (CA V). Recently, autonomous driving has emerged as a promising technology for smart cities. By leveraging communication and artificial intelligence (AI) technologies, autonomous driving can significantly enhance the performance of a city's transportation system. This improvement is achieved through real-time perception of road conditions and precise object detection from onboard sensors (such as radars, LiDARs, and cameras), thereby improving road safety without human intervention [1]. Moreover, the ability of autonomous vehicles to adapt to dynamic environments and communicate with surrounding infrastructure and vehicles is crucial for maintaining the timeliness and accuracy of collected data, thereby enhancing the overall system performance [2]-[9]. Joint perception among connected and autonomous vehicles (CA Vs) is a key enabler to overcome the limitations of individual agent sensing capabilities [10].
Backdoor Attacks against Image-to-Image Networks
Jiang, Wenbo, Li, Hongwei, He, Jiaming, Zhang, Rui, Xu, Guowen, Zhang, Tianwei, Lu, Rongxing
Recently, deep learning-based Image-to-Image (I2I) networks have become the predominant choice for I2I tasks such as image super-resolution and denoising. Despite their remarkable performance, the backdoor vulnerability of I2I networks has not been explored. To fill this research gap, we conduct a comprehensive investigation on the susceptibility of I2I networks to backdoor attacks. Specifically, we propose a novel backdoor attack technique, where the compromised I2I network behaves normally on clean input images, yet outputs a predefined image of the adversary for malicious input images containing the trigger. To achieve this I2I backdoor attack, we propose a targeted universal adversarial perturbation (UAP) generation algorithm for I2I networks, where the generated UAP is used as the backdoor trigger. Additionally, in the backdoor training process that contains the main task and the backdoor task, multi-task learning (MTL) with dynamic weighting methods is employed to accelerate convergence rates. In addition to attacking I2I tasks, we extend our I2I backdoor to attack downstream tasks, including image classification and object detection. Extensive experiments demonstrate the effectiveness of the I2I backdoor on state-of-the-art I2I network architectures, as well as the robustness against different mainstream backdoor defenses.
CLAD: Robust Audio Deepfake Detection Against Manipulation Attacks with Contrastive Learning
Wu, Haolin, Chen, Jing, Du, Ruiying, Wu, Cong, He, Kun, Shang, Xingcan, Ren, Hao, Xu, Guowen
The increasing prevalence of audio deepfakes poses significant security threats, necessitating robust detection methods. While existing detection systems exhibit promise, their robustness against malicious audio manipulations remains underexplored. To bridge the gap, we undertake the first comprehensive study of the susceptibility of the most widely adopted audio deepfake detectors to manipulation attacks. Surprisingly, even manipulations like volume control can significantly bypass detection without affecting human perception. To address this, we propose CLAD (Contrastive Learning-based Audio deepfake Detector) to enhance the robustness against manipulation attacks. The key idea is to incorporate contrastive learning to minimize the variations introduced by manipulations, therefore enhancing detection robustness. Additionally, we incorporate a length loss, aiming to improve the detection accuracy by clustering real audios more closely in the feature space. We comprehensively evaluated the most widely adopted audio deepfake detection models and our proposed CLAD against various manipulation attacks. The detection models exhibited vulnerabilities, with FAR rising to 36.69%, 31.23%, and 51.28% under volume control, fading, and noise injection, respectively. CLAD enhanced robustness, reducing the FAR to 0.81% under noise injection and consistently maintaining an FAR below 1.63% across all tests. Our source code and documentation are available in the artifact repository (https://github.com/CLAD23/CLAD).
Alleviating the Effect of Data Imbalance on Adversarial Training
Li, Guanlin, Xu, Guowen, Zhang, Tianwei
In this paper, we study adversarial training on datasets that obey the long-tailed distribution, which is practical but rarely explored in previous works. Compared with conventional adversarial training on balanced datasets, this process falls into the dilemma of generating uneven adversarial examples (AEs) and an unbalanced feature embedding space, causing the resulting model to exhibit low robustness and accuracy on tail data. To combat that, we theoretically analyze the lower bound of the robust risk to train a model on a long-tailed dataset to obtain the key challenges in addressing the aforementioned dilemmas. Based on it, we propose a new adversarial training framework -- Re-balancing Adversarial Training (REAT). This framework consists of two components: (1) a new training strategy inspired by the effective number to guide the model to generate more balanced and informative AEs; (2) a carefully constructed penalty function to force a satisfactory feature space. Evaluation results on different datasets and model structures prove that REAT can effectively enhance the model's robustness and preserve the model's clean accuracy. The code can be found in https://github.com/GuanlinLee/REAT.
Adaptive Communications in Collaborative Perception with Domain Alignment for Autonomous Driving
Hu, Senkang, Fang, Zhengru, An, Haonan, Xu, Guowen, Zhou, Yuan, Chen, Xianhao, Fang, Yuguang
Collaborative perception among multiple connected and autonomous vehicles can greatly enhance perceptive capabilities by allowing vehicles to exchange supplementary information via communications. Despite advances in previous approaches, challenges still remain due to channel variations and data heterogeneity among collaborative vehicles. To address these issues, we propose ACC-DA, a channel-aware collaborative perception framework to dynamically adjust the communication graph and minimize the average transmission delay while mitigating the side effects from the data heterogeneity. Our novelties lie in three aspects. We first design a transmission delay minimization method, which can construct the communication graph and minimize the transmission delay according to different channel information state. We then propose an adaptive data reconstruction mechanism, which can dynamically adjust the rate-distortion trade-off to enhance perception efficiency. Moreover, it minimizes the temporal redundancy during data transmissions. Finally, we conceive a domain alignment scheme to align the data distribution from different vehicles, which can mitigate the domain gap between different vehicles and improve the performance of the target task. Comprehensive experiments demonstrate the effectiveness of our method in comparison to the existing state-of-the-art works.
Mercury: An Automated Remote Side-channel Attack to Nvidia Deep Learning Accelerator
Yan, Xiaobei, Lou, Xiaoxuan, Xu, Guowen, Qiu, Han, Guo, Shangwei, Chang, Chip Hong, Zhang, Tianwei
DNN accelerators have been widely deployed in many scenarios to speed up the inference process and reduce the energy consumption. One big concern about the usage of the accelerators is the confidentiality of the deployed models: model inference execution on the accelerators could leak side-channel information, which enables an adversary to preciously recover the model details. Such model extraction attacks can not only compromise the intellectual property of DNN models, but also facilitate some adversarial attacks. Although previous works have demonstrated a number of side-channel techniques to extract models from DNN accelerators, they are not practical for two reasons. (1) They only target simplified accelerator implementations, which have limited practicality in the real world. (2) They require heavy human analysis and domain knowledge. To overcome these limitations, this paper presents Mercury, the first automated remote side-channel attack against the off-the-shelf Nvidia DNN accelerator. The key insight of Mercury is to model the side-channel extraction process as a sequence-to-sequence problem. The adversary can leverage a time-to-digital converter (TDC) to remotely collect the power trace of the target model's inference. Then he uses a learning model to automatically recover the architecture details of the victim model from the power trace without any prior knowledge. The adversary can further use the attention mechanism to localize the leakage points that contribute most to the attack. Evaluation results indicate that Mercury can keep the error rate of model extraction below 1%.
A Benchmark of Long-tailed Instance Segmentation with Noisy Labels
Li, Guanlin, Xu, Guowen, Zhang, Tianwei
In this paper, we consider the instance segmentation task on a long-tailed dataset, which contains label noise, i.e., some of the annotations are incorrect. There are two main reasons making this case realistic. First, datasets collected from real world usually obey a long-tailed distribution. Second, for instance segmentation datasets, as there are many instances in one image and some of them are tiny, it is easier to introduce noise into the annotations. Specifically, we propose a new dataset, which is a large vocabulary long-tailed dataset containing label noise for instance segmentation. Furthermore, we evaluate previous proposed instance segmentation algorithms on this dataset. The results indicate that the noise in the training dataset will hamper the model in learning rare categories and decrease the overall performance, and inspire us to explore more effective approaches to address this practical challenge. The code and dataset are available in https://github.com/GuanlinLee/Noisy-LVIS.