Xu, Chengjin
Financial Wind Tunnel: A Retrieval-Augmented Market Simulator
Cao, Bokai, Lin, Xueyuan, Qi, Yiyan, Xu, Chengjin, Yang, Cehao, Guo, Jian
Market simulator tries to create high-quality synthetic financial data that mimics real-world market dynamics, which is crucial for model development and robust assessment. Despite continuous advancements in simulation methodologies, market fluctuations vary in terms of scale and sources, but existing frameworks often excel in only specific tasks. To address this challenge, we propose Financial Wind Tunnel (FWT), a retrieval-augmented market simulator designed to generate controllable, reasonable, and adaptable market dynamics for model testing. FWT offers a more comprehensive and systematic generative capability across different data frequencies. By leveraging a retrieval method to discover cross-sectional information as the augmented condition, our diffusion-based simulator seamlessly integrates both macro- and micro-level market patterns. Furthermore, our framework allows the simulation to be controlled with wide applicability, including causal generation through "what-if" prompts or unprecedented cross-market trend synthesis. Additionally, we develop an automated optimizer for downstream quantitative models, using stress testing of simulated scenarios via FWT to enhance returns while controlling risks. Experimental results demonstrate that our approach enables the generalizable and reliable market simulation, significantly improve the performance and adaptability of downstream models, particularly in highly complex and volatile market conditions. Our code and data sample is available at https://anonymous.4open.science/r/fwt_-E852
LongFaith: Enhancing Long-Context Reasoning in LLMs with Faithful Synthetic Data
Yang, Cehao, Lin, Xueyuan, Xu, Chengjin, Jiang, Xuhui, Ma, Shengjie, Liu, Aofan, Xiong, Hui, Guo, Jian
Despite the growing development of long-context large language models (LLMs), data-centric approaches relying on synthetic data have been hindered by issues related to faithfulness, which limit their effectiveness in enhancing model performance on tasks such as long-context reasoning and question answering (QA). These challenges are often exacerbated by misinformation caused by lack of verification, reasoning without attribution, and potential knowledge conflicts. We propose LongFaith, a novel pipeline for synthesizing faithful long-context reasoning instruction datasets. By integrating ground truth and citation-based reasoning prompts, we eliminate distractions and improve the accuracy of reasoning chains, thus mitigating the need for costly verification processes. We open-source two synthesized datasets, LongFaith-SFT and LongFaith-PO, which systematically address multiple dimensions of faithfulness, including verified reasoning, attribution, and contextual grounding. Extensive experiments on multi-hop reasoning datasets and LongBench demonstrate that models fine-tuned on these datasets significantly improve performance. Our ablation studies highlight the scalability and adaptability of the LongFaith pipeline, showcasing its broad applicability in developing long-context LLMs.
A Survey on LLM-as-a-Judge
Gu, Jiawei, Jiang, Xuhui, Shi, Zhichao, Tan, Hexiang, Zhai, Xuehao, Xu, Chengjin, Li, Wei, Shen, Yinghan, Ma, Shengjie, Liu, Honghao, Wang, Yuanzhuo, Guo, Jian
Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.
Context-aware Inductive Knowledge Graph Completion with Latent Type Constraints and Subgraph Reasoning
Li, Muzhi, Yang, Cehao, Xu, Chengjin, Song, Zixing, Jiang, Xuhui, Guo, Jian, Leung, Ho-fung, King, Irwin
Inductive knowledge graph completion (KGC) aims to predict missing triples with unseen entities. Recent works focus on modeling reasoning paths between the head and tail entity as direct supporting evidence. However, these methods depend heavily on the existence and quality of reasoning paths, which limits their general applicability in different scenarios. In addition, we observe that latent type constraints and neighboring facts inherent in KGs are also vital in inferring missing triples. To effectively utilize all useful information in KGs, we introduce CATS, a novel context-aware inductive KGC solution. With sufficient guidance from proper prompts and supervised fine-tuning, CATS activates the strong semantic understanding and reasoning capabilities of large language models to assess the existence of query triples, which consist of two modules. First, the type-aware reasoning module evaluates whether the candidate entity matches the latent entity type as required by the query relation. Then, the subgraph reasoning module selects relevant reasoning paths and neighboring facts, and evaluates their correlation to the query triple. Experiment results on three widely used datasets demonstrate that CATS significantly outperforms state-of-the-art methods in 16 out of 18 transductive, inductive, and few-shot settings with an average absolute MRR improvement of 7.2%.
Retrieval, Reasoning, Re-ranking: A Context-Enriched Framework for Knowledge Graph Completion
Li, Muzhi, Yang, Cehao, Xu, Chengjin, Jiang, Xuhui, Qi, Yiyan, Guo, Jian, Leung, Ho-fung, King, Irwin
The Knowledge Graph Completion~(KGC) task aims to infer the missing entity from an incomplete triple. Existing embedding-based methods rely solely on triples in the KG, which is vulnerable to specious relation patterns and long-tail entities. On the other hand, text-based methods struggle with the semantic gap between KG triples and natural language. Apart from triples, entity contexts (e.g., labels, descriptions, aliases) also play a significant role in augmenting KGs. To address these limitations, we propose KGR3, a context-enriched framework for KGC. KGR3 is composed of three modules. Firstly, the Retrieval module gathers supporting triples from the KG, collects plausible candidate answers from a base embedding model, and retrieves context for each related entity. Then, the Reasoning module employs a large language model to generate potential answers for each query triple. Finally, the Re-ranking module combines candidate answers from the two modules mentioned above, and fine-tunes an LLM to provide the best answer. Extensive experiments on widely used datasets demonstrate that KGR3 consistently improves various KGC methods. Specifically, the best variant of KGR3 achieves absolute Hits@1 improvements of 12.3% and 5.6% on the FB15k237 and WN18RR datasets.
Golden Touchstone: A Comprehensive Bilingual Benchmark for Evaluating Financial Large Language Models
Wu, Xiaojun, Liu, Junxi, Su, Huanyi, Lin, Zhouchi, Qi, Yiyan, Xu, Chengjin, Su, Jiajun, Zhong, Jiajie, Wang, Fuwei, Wang, Saizhuo, Hua, Fengrui, Li, Jia, Guo, Jian
As large language models become increasingly prevalent in the financial sector, there is a pressing need for a standardized method to comprehensively assess their performance. However, existing finance benchmarks often suffer from limited language and task coverage, as well as challenges such as low-quality datasets and inadequate adaptability for LLM evaluation. To address these limitations, we propose "Golden Touchstone", the first comprehensive bilingual benchmark for financial LLMs, which incorporates representative datasets from both Chinese and English across eight core financial NLP tasks. Developed from extensive open source data collection and industry-specific demands, this benchmark includes a variety of financial tasks aimed at thoroughly assessing models' language understanding and generation capabilities. Through comparative analysis of major models on the benchmark, such as GPT-4o, Llama3, FinGPT and FinMA, we reveal their strengths and limitations in processing complex financial information. Additionally, we open-sourced Touchstone-GPT, a financial LLM trained through continual pre-training and financial instruction tuning, which demonstrates strong performance on the bilingual benchmark but still has limitations in specific tasks.This research not only provides the financial large language models with a practical evaluation tool but also guides the development and optimization of future research.
RuleRAG: Rule-guided retrieval-augmented generation with language models for question answering
Chen, Zhongwu, Xu, Chengjin, Wang, Dingmin, Huang, Zhen, Dou, Yong, Guo, Jian
Retrieval-augmented generation (RAG) framework has shown promising potential in knowledge-intensive question answering (QA) by retrieving external corpus and generating based on augmented context. However, existing approaches only consider the query itself, neither specifying the retrieval preferences for the retrievers nor informing the generators of how to refer to the retrieved documents for the answers, which poses a significant challenge to the QA performance. To address these issues, we propose Rule-Guided Retrieval-Augmented Generation with LMs, which explicitly introduces symbolic rules as demonstrations for in-context learning (RuleRAG-ICL) to guide retrievers to retrieve logically related documents in the directions of rules and uniformly guide generators to generate answers attributed by the guidance of the same set of rules. Moreover, the combination of queries and rules can be further used as supervised fine-tuning data to update retrievers and generators (RuleRAG-FT) to achieve better rule-based instruction following capability, leading to retrieve more supportive results and generate more acceptable answers. To emphasize the attribution of rules, we construct five rule-aware QA benchmarks, including three temporal and two static scenarios, and equip RuleRAG with several kinds of retrievers and generators. Experiments demonstrate that training-free RuleRAG-ICL effectively improves the retrieval quality of +89.2% in Recall@10 scores and generation accuracy of +103.1% in exact match scores over standard RAG on average across the five benchmarks, and further fine-tuned RuleRAG-FT consistently yields more significant performance enhancement. Extensive analyses indicate that RuleRAG scales well with increasing numbers of retrieved documents and exhibits generalization ability for untrained rules.
Financial Knowledge Large Language Model
Yang, Cehao, Xu, Chengjin, Qi, Yiyan
Artificial intelligence is making significant strides in the finance industry, revolutionizing how data is processed and interpreted. Among these technologies, large language models (LLMs) have demonstrated substantial potential to transform financial services by automating complex tasks, enhancing customer service, and providing detailed financial analysis. Firstly, we introduce IDEA-FinBench, an evaluation benchmark specifically tailored for assessing financial knowledge in large language models (LLMs). This benchmark utilizes questions from two globally respected and authoritative financial professional exams, aimimg to comprehensively evaluate the capability of LLMs to directly address exam questions pertinent to the finance sector. Secondly, we propose IDEA-FinKER, a Financial Knowledge Enhancement framework designed to facilitate the rapid adaptation of general LLMs to the financial domain, introducing a retrieval-based few-shot learning method for real-time context-level knowledge injection, and a set of high-quality financial knowledge instructions for fine-tuning any general LLM. Finally, we present IDEA-FinQA, a financial question-answering system powered by LLMs. This system is structured around a scheme of real-time knowledge injection and factual enhancement using external knowledge. IDEA-FinQA is comprised of three main modules: the data collector, the data querying module, and LLM-based agents tasked with specific functions.
Context Graph
Xu, Chengjin, Li, Muzhi, Yang, Cehao, Jiang, Xuhui, Tang, Lumingyuan, Qi, Yiyan, Guo, Jian
Knowledge Graphs (KGs) are foundational structures in many AI applications, representing entities and their interrelations through triples. However, triple-based KGs lack the contextual information of relational knowledge, like temporal dynamics and provenance details, which are crucial for comprehensive knowledge representation and effective reasoning. Instead, \textbf{Context Graphs} (CGs) expand upon the conventional structure by incorporating additional information such as time validity, geographic location, and source provenance. This integration provides a more nuanced and accurate understanding of knowledge, enabling KGs to offer richer insights and support more sophisticated reasoning processes. In this work, we first discuss the inherent limitations of triple-based KGs and introduce the concept of CGs, highlighting their advantages in knowledge representation and reasoning. We then present a context graph reasoning \textbf{CGR$^3$} paradigm that leverages large language models (LLMs) to retrieve candidate entities and related contexts, rank them based on the retrieved information, and reason whether sufficient information has been obtained to answer a query. Our experimental results demonstrate that CGR$^3$ significantly improves performance on KG completion (KGC) and KG question answering (KGQA) tasks, validating the effectiveness of incorporating contextual information on KG representation and reasoning.
Ensuring Safe and High-Quality Outputs: A Guideline Library Approach for Language Models
Luo, Yi, Lin, Zhenghao, Zhang, Yuhao, Sun, Jiashuo, Lin, Chen, Xu, Chengjin, Su, Xiangdong, Shen, Yelong, Guo, Jian, Gong, Yeyun
Large Language Models (LLMs) exhibit impressive capabilities but also present risks such as biased content generation and privacy issues. One of the current alignment techniques includes principle-driven integration, but it faces challenges arising from the imprecision of manually crafted rules and inadequate risk perception in models without safety training. To address these, we introduce Guide-Align, a two-stage approach. Initially, a safety-trained model identifies potential risks and formulates specific guidelines for various inputs, establishing a comprehensive library of guidelines and a model for input-guidelines retrieval. Subsequently, the retrieval model correlates new inputs with relevant guidelines, which guide LLMs in response generation to ensure safe and high-quality outputs, thereby aligning with human values. An additional optional stage involves fine-tuning a model with well-aligned datasets generated through the process implemented in the second stage. Our method customizes guidelines to accommodate diverse inputs, thereby enhancing the fine-grainedness and comprehensiveness of the guideline library. Furthermore, it incorporates safety expertise from a safety-trained LLM through a lightweight retrieval model. We evaluate our approach on three benchmarks, demonstrating significant improvements in LLM security and quality. Notably, our fine-tuned model, Labrador, even at 13 billion parameters, outperforms GPT-3.5-turbo and surpasses GPT-4 in alignment capabilities.