Goto

Collaborating Authors

 Wu, Keshu


FollowGen: A Scaled Noise Conditional Diffusion Model for Car-Following Trajectory Prediction

arXiv.org Artificial Intelligence

Vehicle trajectory prediction is crucial for advancing autonomous driving and advanced driver assistance systems (ADAS). Although deep learning-based approaches - especially those utilizing transformer-based and generative models - have markedly improved prediction accuracy by capturing complex, non-linear patterns in vehicle dynamics and traffic interactions, they frequently overlook detailed car-following behaviors and the inter-vehicle interactions critical for real-world driving applications, particularly in fully autonomous or mixed traffic scenarios. To address the issue, this study introduces a scaled noise conditional diffusion model for car-following trajectory prediction, which integrates detailed inter-vehicular interactions and car-following dynamics into a generative framework, improving both the accuracy and plausibility of predicted trajectories. The model utilizes a novel pipeline to capture historical vehicle dynamics by scaling noise with encoded historical features within the diffusion process. Particularly, it employs a cross-attention-based transformer architecture to model intricate inter-vehicle dependencies, effectively guiding the denoising process and enhancing prediction accuracy. Experimental results on diverse real-world driving scenarios demonstrate the state-of-the-art performance and robustness of the proposed method.


A Digital Twin Framework for Physical-Virtual Integration in V2X-Enabled Connected Vehicle Corridors

arXiv.org Artificial Intelligence

Transportation Cyber-Physical Systems (T-CPS) are critical in improving traffic safety, reliability, and sustainability by integrating computing, communication, and control in transportation systems. The connected vehicle corridor is at the forefront of this transformation, where Cellular Vehicle-to-Everything (C-V2X) technology facilitates real-time data exchange between infrastructure, vehicles, and road users. However, challenges remain in processing and synchronizing the vast V2X data from vehicles and roadside units, particularly when ensuring scalability, data integrity, and operational resilience. This paper presents a digital twin framework for T-CPS, developed from a real-world connected vehicle corridor to address these challenges. By leveraging C-V2X technology and real-time data from infrastructure, vehicles, and road users, the digital twin accurately replicates vehicle behaviors, signal phases, and traffic patterns within the CARLA simulation environment. This framework demonstrates high fidelity between physical and digital systems and ensures robust synchronization of vehicle trajectories and signal phases through extensive experiments. Moreover, the digital twin's scalable and redundant architecture enhances data integrity, making it capable of supporting future large-scale C-V2X deployments. The digital twin is a vital tool in T-CPS, enabling real-time traffic monitoring, prediction, and optimization to enhance the reliability and safety of transportation systems.


Goal-based Neural Physics Vehicle Trajectory Prediction Model

arXiv.org Artificial Intelligence

Vehicle trajectory prediction plays a vital role in intelligent transportation systems and autonomous driving, as it significantly affects vehicle behavior planning and control, thereby influencing traffic safety and efficiency. Numerous studies have been conducted to predict short-term vehicle trajectories in the immediate future. However, long-term trajectory prediction remains a major challenge due to accumulated errors and uncertainties. Additionally, balancing accuracy with interpretability in the prediction is another challenging issue in predicting vehicle trajectory. To address these challenges, this paper proposes a Goal-based Neural Physics Vehicle Trajectory Prediction Model (GNP). The GNP model simplifies vehicle trajectory prediction into a two-stage process: determining the vehicle's goal and then choosing the appropriate trajectory to reach this goal. The GNP model contains two sub-modules to achieve this process. The first sub-module employs a multi-head attention mechanism to accurately predict goals. The second sub-module integrates a deep learning model with a physics-based social force model to progressively predict the complete trajectory using the generated goals. The GNP demonstrates state-of-the-art long-term prediction accuracy compared to four baseline models. We provide interpretable visualization results to highlight the multi-modality and inherent nature of our neural physics framework. Additionally, ablation studies are performed to validate the effectiveness of our key designs.


Real-World Data Inspired Interactive Connected Traffic Scenario Generation

arXiv.org Artificial Intelligence

Simulation is a crucial step in ensuring accurate, efficient, and realistic Connected and Autonomous Vehicles (CAVs) testing and validation. As the adoption of CAV accelerates, the integration of real-world data into simulation environments becomes increasingly critical. Among various technologies utilized by CAVs, Vehicle-to-Everything (V2X) communication plays a crucial role in ensuring a seamless transmission of information between CAVs, infrastructure, and other road users. However, most existing studies have focused on developing and testing communication protocols, resource allocation strategies, and data dissemination techniques in V2X. There is a gap where real-world V2X data is integrated into simulations to generate diverse and high-fidelity traffic scenarios. To fulfill this research gap, we leverage real-world Signal Phase and Timing (SPaT) data from Roadside Units (RSUs) to enhance the fidelity of CAV simulations. Moreover, we developed an algorithm that enables Autonomous Vehicles (AVs) to respond dynamically to real-time traffic signal data, simulating realistic V2X communication scenarios. Such high-fidelity simulation environments can generate multimodal data, including trajectory, semantic camera, depth camera, and bird's eye view data for various traffic scenarios. The generated scenarios and data provide invaluable insights into AVs' interactions with traffic infrastructure and other road users. This work aims to bridge the gap between theoretical research and practical deployment of CAVs, facilitating the development of smarter and safer transportation systems.


Crossfusor: A Cross-Attention Transformer Enhanced Conditional Diffusion Model for Car-Following Trajectory Prediction

arXiv.org Artificial Intelligence

Vehicle trajectory prediction is crucial for advancing autonomous driving and advanced driver assistance systems (ADAS), enhancing road safety and traffic efficiency. While traditional methods have laid foundational work, modern deep learning techniques, particularly transformer-based models and generative approaches, have significantly improved prediction accuracy by capturing complex and non-linear patterns in vehicle motion and traffic interactions. However, these models often overlook the detailed car-following behaviors and inter-vehicle interactions essential for real-world driving scenarios. This study introduces a Cross-Attention Transformer Enhanced Conditional Diffusion Model (Crossfusor) specifically designed for car-following trajectory prediction. Crossfusor integrates detailed inter-vehicular interactions and car-following dynamics into a robust diffusion framework, improving both the accuracy and realism of predicted trajectories. The model leverages a novel temporal feature encoding framework combining GRU, location-based attention mechanisms, and Fourier embedding to capture historical vehicle dynamics. It employs noise scaled by these encoded historical features in the forward diffusion process, and uses a cross-attention transformer to model intricate inter-vehicle dependencies in the reverse denoising process. Experimental results on the NGSIM dataset demonstrate that Crossfusor outperforms state-of-the-art models, particularly in long-term predictions, showcasing its potential for enhancing the predictive capabilities of autonomous driving systems.


Graph-Based Interaction-Aware Multimodal 2D Vehicle Trajectory Prediction using Diffusion Graph Convolutional Networks

arXiv.org Artificial Intelligence

Predicting vehicle trajectories is crucial for ensuring automated vehicle operation efficiency and safety, particularly on congested multi-lane highways. In such dynamic environments, a vehicle's motion is determined by its historical behaviors as well as interactions with surrounding vehicles. These intricate interactions arise from unpredictable motion patterns, leading to a wide range of driving behaviors that warrant in-depth investigation. This study presents the Graph-based Interaction-aware Multi-modal Trajectory Prediction (GIMTP) framework, designed to probabilistically predict future vehicle trajectories by effectively capturing these interactions. Within this framework, vehicles' motions are conceptualized as nodes in a time-varying graph, and the traffic interactions are represented by a dynamic adjacency matrix. To holistically capture both spatial and temporal dependencies embedded in this dynamic adjacency matrix, the methodology incorporates the Diffusion Graph Convolutional Network (DGCN), thereby providing a graph embedding of both historical states and future states. Furthermore, we employ a driving intention-specific feature fusion, enabling the adaptive integration of historical and future embeddings for enhanced intention recognition and trajectory prediction. This model gives two-dimensional predictions for each mode of longitudinal and lateral driving behaviors and offers probabilistic future paths with corresponding probabilities, addressing the challenges of complex vehicle interactions and multi-modality of driving behaviors. Validation using real-world trajectory datasets demonstrates the efficiency and potential.