Wu, Jibin
MetaLA: Unified Optimal Linear Approximation to Softmax Attention Map
Chou, Yuhong, Yao, Man, Wang, Kexin, Pan, Yuqi, Zhu, Ruijie, Zhong, Yiran, Qiao, Yu, Wu, Jibin, Xu, Bo, Li, Guoqi
Various linear complexity models, such as Linear Transformer (LinFormer), State Space Model (SSM), and Linear RNN (LinRNN), have been proposed to replace the conventional softmax attention in Transformer structures. However, the optimal design of these linear models is still an open question. In this work, we attempt to answer this question by finding the best linear approximation to softmax attention from a theoretical perspective. We start by unifying existing linear complexity models as the linear attention form and then identify three conditions for the optimal linear attention design: i) Dynamic memory ability; ii) Static approximation ability; iii) Least parameter approximation. We find that none of the current linear models meet all three conditions, resulting in suboptimal performance. Instead, we propose Meta Linear Attention (MetaLA) as a solution that satisfies these conditions. Our experiments on Multi-Query Associative Recall (MQAR) task, language modeling, image classification, and Long-Range Arena (LRA) benchmark demonstrate that MetaLA is more effective than the existing linear models.
HM3: Hierarchical Multi-Objective Model Merging for Pretrained Models
Zhou, Yu, Wu, Xingyu, Wu, Jibin, Feng, Liang, Tan, Kay Chen
Model merging is a technique that combines multiple large pretrained models into a single model with enhanced performance and broader task adaptability. It has gained popularity in large pretrained model development due to its ability to bypass the need for original training data and further training processes. However, most existing model merging approaches focus solely on exploring the parameter space, merging models with identical architectures. Merging within the architecture space, despite its potential, remains in its early stages due to the vast search space and the challenges of layer compatibility. This paper marks a significant advance toward more flexible and comprehensive model merging techniques by modeling the architecture-space merging process as a reinforcement learning task. We train policy and value networks using offline sampling of weight vectors, which are then employed for the online optimization of merging strategies. Moreover, a multi-objective optimization paradigm is introduced to accommodate users' diverse task preferences, learning the Pareto front of optimal models to offer customized merging suggestions. Experimental results across multiple tasks, including text translation, mathematical reasoning, and code generation, validate the effectiveness and superiority of the proposed framework in model merging. The code will be made publicly available after the review process.
Unlock the Power of Algorithm Features: A Generalization Analysis for Algorithm Selection
Wu, Xingyu, Zhong, Yan, Wu, Jibin, Huang, Yuxiao, Wu, Sheng-hao, Tan, Kay Chen
In the algorithm selection research, the discussion surrounding algorithm features has been significantly overshadowed by the emphasis on problem features. Although a few empirical studies have yielded evidence regarding the effectiveness of algorithm features, the potential benefits of incorporating algorithm features into algorithm selection models and their suitability for different scenarios remain unclear. In this paper, we address this gap by proposing the first provable guarantee for algorithm selection based on algorithm features, taking a generalization perspective. We analyze the benefits and costs associated with algorithm features and investigate how the generalization error is affected by different factors. Specifically, we examine adaptive and predefined algorithm features under transductive and inductive learning paradigms, respectively, and derive upper bounds for the generalization error based on their model's Rademacher complexity. Our theoretical findings not only provide tight upper bounds, but also offer analytical insights into the impact of various factors, such as the training scale of problem instances and candidate algorithms, model parameters, feature values, and distributional differences between the training and test data. Notably, we demonstrate how models will benefit from algorithm features in complex scenarios involving many algorithms, and proves the positive correlation between generalization error bound and $\chi^2$-divergence of distributions.
CausalBench: A Comprehensive Benchmark for Causal Learning Capability of Large Language Models
Zhou, Yu, Wu, Xingyu, Huang, Beicheng, Wu, Jibin, Feng, Liang, Tan, Kay Chen
Causality reveals fundamental principles behind data distributions in real-world scenarios, and the capability of large language models (LLMs) to understand causality directly impacts their efficacy across explaining outputs, adapting to new evidence, and generating counterfactuals. With the proliferation of LLMs, the evaluation of this capacity is increasingly garnering attention. However, the absence of a comprehensive benchmark has rendered existing evaluation studies being straightforward, undiversified, and homogeneous. To address these challenges, this paper proposes a comprehensive benchmark, namely CausalBench, to evaluate the causality understanding capabilities of LLMs. Originating from the causal research community, CausalBench encompasses three causal learning-related tasks, which facilitate a convenient comparison of LLMs' performance with classic causal learning algorithms. Meanwhile, causal networks of varying scales and densities are integrated in CausalBench, to explore the upper limits of LLMs' capabilities across task scenarios of varying difficulty. Notably, background knowledge and structured data are also incorporated into CausalBench to thoroughly unlock the underlying potential of LLMs for long-text comprehension and prior information utilization. Based on CausalBench, this paper evaluates nineteen leading LLMs and unveils insightful conclusions in diverse aspects. Firstly, we present the strengths and weaknesses of LLMs and quantitatively explore the upper limits of their capabilities across various scenarios. Meanwhile, we further discern the adaptability and abilities of LLMs to specific structural networks and complex chain of thought structures. Moreover, this paper quantitatively presents the differences across diverse information sources and uncovers the gap between LLMs' capabilities in causal understanding within textual contexts and numerical domains.
Scaling Supervised Local Learning with Augmented Auxiliary Networks
Ma, Chenxiang, Wu, Jibin, Si, Chenyang, Tan, Kay Chen
Deep neural networks are typically trained using global error signals that backpropagate (BP) end-to-end, which is not only biologically implausible but also suffers from the update locking problem and requires huge memory consumption. Local learning, which updates each layer independently with a gradient-isolated auxiliary network, offers a promising alternative to address the above problems. However, existing local learning methods are confronted with a large accuracy gap with the BP counterpart, particularly for large-scale networks. This is due to the weak coupling between local layers and their subsequent network layers, as there is no gradient communication across layers. To tackle this issue, we put forward an augmented local learning method, dubbed AugLocal. AugLocal constructs each hidden layer's auxiliary network by uniformly selecting a small subset of layers from its subsequent network layers to enhance their synergy. We also propose to linearly reduce the depth of auxiliary networks as the hidden layer goes deeper, ensuring sufficient network capacity while reducing the computational cost of auxiliary networks. Our extensive experiments on four image classification datasets (i.e., CIFAR-10, SVHN, STL-10, and ImageNet) demonstrate that AugLocal can effectively scale up to tens of local layers with a comparable accuracy to BP-trained networks while reducing GPU memory usage by around 40%. The proposed AugLocal method, therefore, opens up a myriad of opportunities for training high-performance deep neural networks on resource-constrained platforms. Artificial neural networks (ANNs) have achieved remarkable performance in pattern recognition tasks by increasing their depth (Krizhevsky et al., 2012; LeCun et al., 2015; He et al., 2016; Huang et al., 2017). However, these deep ANNs are trained end-to-end with the backpropagation algorithm (BP) (Rumelhart et al., 1985), which faces several limitations. One critical criticism of BP is its biological implausibility (Crick, 1989; Lillicrap et al., 2020), as it relies on a global objective optimized by backpropagating error signals across layers. This stands in contrast to biological neural networks that predominantly learn based on local signals (Hebb, 1949; Caporale & Dan, 2008; Bengio et al., 2015).
Evolutionary Computation in the Era of Large Language Model: Survey and Roadmap
Wu, Xingyu, Wu, Sheng-hao, Wu, Jibin, Feng, Liang, Tan, Kay Chen
Large Language Models (LLMs) have not only revolutionized natural language processing but also extended their prowess to various domains, marking a significant stride towards artificial general intelligence. The interplay between LLMs and Evolutionary Algorithms (EAs), despite differing in objectives and methodologies, share a common pursuit of applicability in complex problems. Meanwhile, EA can provide an optimization framework for LLM's further enhancement under black-box settings, empowering LLM with flexible global search capacities. On the other hand, the abundant domain knowledge inherent in LLMs could enable EA to conduct more intelligent searches. Furthermore, the text processing and generative capabilities of LLMs would aid in deploying EAs across a wide range of tasks. Based on these complementary advantages, this paper provides a thorough review and a forward-looking roadmap, categorizing the reciprocal inspiration into two main avenues: LLM-enhanced EA and EA-enhanced LLM. Some integrated synergy methods are further introduced to exemplify the amalgamation of LLMs and EAs in diverse scenarios, including neural architecture search, code generation, software engineering, and various generation tasks. As the first comprehensive review focused on the EA research in the era of LLMs, this paper provides a foundational stepping stone for understanding the collaborative potential of LLMs and EAs. By meticulous categorization and critical analysis, we contribute to the ongoing discourse on the cross-disciplinary study of these two powerful paradigms. The identified challenges and future directions offer guidance for researchers and practitioners aiming to unlock the full potential of this innovative collaboration in propelling advancements in optimization and artificial intelligence.
Large Language Model-Enhanced Algorithm Selection: Towards Comprehensive Algorithm Representation
Wu, Xingyu, Zhong, Yan, Wu, Jibin, Jiang, Bingbing, Tan, Kay Chen
Algorithm selection aims to identify the most suitable algorithm for solving a specific problem before execution, which has become a critical process of the AutoML. Current mainstream algorithm selection techniques rely heavily on feature representations of various problems and employ the performance of each algorithm as supervised information. However, there is a significant research gap concerning the consideration of algorithm features. This gap is primarily attributed to the inherent complexity of algorithms, making it particularly challenging to find a universally effective feature extraction method that is applicable across a diverse range of algorithms. Unfortunately, neglecting this aspect undoubtedly impacts the accuracy of algorithm selection and indirectly necessitates an increased volume of problem data for training purposes. This paper takes a significant stride towards addressing this gap by proposing an approach that integrates algorithm representation into the algorithm selection process. Specifically, our proposed model employs distinct modules to extract representations of both problems and algorithms, where the algorithm representation leverages the capabilities of pre-trained LLMs in the realm of code comprehension. Following the extraction of embedding vectors for both algorithms and problems, the most suitable algorithm is determined through calculations of matching degrees. Our experiments not only validate the effectiveness of the proposed model but also showcase the performance of different embedded pre-trained LLMs, which suggests that the proposed algorithm selection framework holds the potential to serve as a baseline task for evaluating the code representation capabilities of LLMs.
Delayed Memory Unit: Modelling Temporal Dependency Through Delay Gate
Sun, Pengfei, Wu, Jibin, Zhang, Malu, Devos, Paul, Botteldooren, Dick
Recurrent Neural Networks (RNNs) are renowned for their adeptness in modeling temporal dependencies, a trait that has driven their widespread adoption for sequential data processing. Nevertheless, vanilla RNNs are confronted with the well-known issue of gradient vanishing and exploding, posing a significant challenge for learning and establishing long-range dependencies. Additionally, gated RNNs tend to be over-parameterized, resulting in poor network generalization. To address these challenges, we propose a novel Delayed Memory Unit (DMU) in this paper, wherein a delay line structure, coupled with delay gates, is introduced to facilitate temporal interaction and temporal credit assignment, so as to enhance the temporal modeling capabilities of vanilla RNNs. Particularly, the DMU is designed to directly distribute the input information to the optimal time instant in the future, rather than aggregating and redistributing it over time through intricate network dynamics. Our proposed DMU demonstrates superior temporal modeling capabilities across a broad range of sequential modeling tasks, utilizing considerably fewer parameters than other state-of-the-art gated RNN models in applications such as speech recognition, radar gesture recognition, ECG waveform segmentation, and permuted sequential image classification.
Typing to Listen at the Cocktail Party: Text-Guided Target Speaker Extraction
Hao, Xiang, Wu, Jibin, Yu, Jianwei, Xu, Chenglin, Tan, Kay Chen
Humans possess an extraordinary ability to selectively focus on the sound source of interest amidst complex acoustic environments, commonly referred to as cocktail party scenarios. In an attempt to replicate this remarkable auditory attention capability in machines, target speaker extraction (TSE) models have been developed. These models leverage the pre-registered cues of the target speaker to extract the sound source of interest. However, the effectiveness of these models is hindered in real-world scenarios due to the unreliable or even absence of pre-registered cues. To address this limitation, this study investigates the integration of natural language description to enhance the feasibility, controllability, and performance of existing TSE models. Specifically, we propose a model named LLM-TSE, wherein a large language model (LLM) extracts useful semantic cues from the user's typed text input. These cues can serve as independent extraction cues, task selectors to control the TSE process or complement the pre-registered cues. Our experimental results demonstrate competitive performance when only text-based cues are presented, the effectiveness of using input text as a task selector, and a new state-of-the-art when combining text-based cues with pre-registered cues. To our knowledge, this is the first study to successfully incorporate LLMs to guide target speaker extraction, which can be a cornerstone for cocktail party problem research. Demos are provided at https://github.com/haoxiangsnr/llm-tse Colin, 1953) - a term coined to describe a scenario where multiple sound sources are engaged in simultaneous conversation, yet a listener can selectively concentrate on a single sound source. This scenario represents a complex challenge in auditory perception (Haykin & Chen, 2005; Mesgarani & Chang, 2012; Bizley & Cohen, 2013) and serves as a remarkable demonstration of the intricate sound processing that occurs within the human auditory system.