Wen, Qingsong
MathAgent: Leveraging a Mixture-of-Math-Agent Framework for Real-World Multimodal Mathematical Error Detection
Yan, Yibo, Wang, Shen, Huo, Jiahao, Yu, Philip S., Hu, Xuming, Wen, Qingsong
Mathematical error detection in educational settings presents a significant challenge for Multimodal Large Language Models (MLLMs), requiring a sophisticated understanding of both visual and textual mathematical content along with complex reasoning capabilities. Though effective in mathematical problem-solving, MLLMs often struggle with the nuanced task of identifying and categorizing student errors in multimodal mathematical contexts. Therefore, we introduce MathAgent, a novel Mixture-of-Math-Agent framework designed specifically to address these challenges. Our approach decomposes error detection into three phases, each handled by a specialized agent: an image-text consistency validator, a visual semantic interpreter, and an integrative error analyzer. This architecture enables more accurate processing of mathematical content by explicitly modeling relationships between multimodal problems and student solution steps. We evaluate MathAgent on real-world educational data, demonstrating approximately 5% higher accuracy in error step identification and 3% improvement in error categorization compared to baseline models. Besides, MathAgent has been successfully deployed in an educational platform that has served over one million K-12 students, achieving nearly 90% student satisfaction while generating significant cost savings by reducing manual error detection.
How Can Time Series Analysis Benefit From Multiple Modalities? A Survey and Outlook
Liu, Haoxin, Kamarthi, Harshavardhan, Zhao, Zhiyuan, Xu, Shangqing, Wang, Shiyu, Wen, Qingsong, Hartvigsen, Tom, Wang, Fei, Prakash, B. Aditya
Time series analysis (TSA) is a longstanding research topic in the data mining community and has wide real-world significance. Compared to "richer" modalities such as language and vision, which have recently experienced explosive development and are densely connected, the time-series modality remains relatively underexplored and isolated. We notice that many recent TSA works have formed a new research field, i.e., Multiple Modalities for TSA (MM4TSA). In general, these MM4TSA works follow a common motivation: how TSA can benefit from multiple modalities. This survey is the first to offer a comprehensive review and a detailed outlook for this emerging field. Specifically, we systematically discuss three benefits: (1) reusing foundation models of other modalities for efficient TSA, (2) multimodal extension for enhanced TSA, and (3) cross-modality interaction for advanced TSA. We further group the works by the introduced modality type, including text, images, audio, tables, and others, within each perspective. Finally, we identify the gaps with future opportunities, including the reused modalities selections, heterogeneous modality combinations, and unseen tasks generalizations, corresponding to the three benefits. We release an up-to-date GitHub repository that includes key papers and resources.
Empowering Time Series Analysis with Synthetic Data: A Survey and Outlook in the Era of Foundation Models
Liu, Xu, Aksu, Taha, Liu, Juncheng, Wen, Qingsong, Liang, Yuxuan, Xiong, Caiming, Savarese, Silvio, Sahoo, Doyen, Li, Junnan, Liu, Chenghao
Time series analysis is crucial for understanding dynamics of complex systems. Recent advances in foundation models have led to task-agnostic Time Series Foundation Models (TSFMs) and Large Language Model-based Time Series Models (TSLLMs), enabling generalized learning and integrating contextual information. However, their success depends on large, diverse, and high-quality datasets, which are challenging to build due to regulatory, diversity, quality, and quantity constraints. Synthetic data emerge as a viable solution, addressing these challenges by offering scalable, unbiased, and high-quality alternatives. This survey provides a comprehensive review of synthetic data for TSFMs and TSLLMs, analyzing data generation strategies, their role in model pretraining, fine-tuning, and evaluation, and identifying future research directions.
LLM Agents for Education: Advances and Applications
Chu, Zhendong, Wang, Shen, Xie, Jian, Zhu, Tinghui, Yan, Yibo, Ye, Jinheng, Zhong, Aoxiao, Hu, Xuming, Liang, Jing, Yu, Philip S., Wen, Qingsong
Large Language Model (LLM) agents have demonstrated remarkable capabilities in automating tasks and driving innovation across diverse educational applications. In this survey, we provide a systematic review of state-of-the-art research on LLM agents in education, categorizing them into two broad classes: (1) \emph{Pedagogical Agents}, which focus on automating complex pedagogical tasks to support both teachers and students; and (2) \emph{Domain-Specific Educational Agents}, which are tailored for specialized fields such as science education, language learning, and professional development. We comprehensively examine the technological advancements underlying these LLM agents, including key datasets, benchmarks, and algorithmic frameworks that drive their effectiveness. Furthermore, we discuss critical challenges such as privacy, bias and fairness concerns, hallucination mitigation, and integration with existing educational ecosystems. This survey aims to provide a comprehensive technological overview of LLM agents for education, fostering further research and collaboration to enhance their impact for the greater good of learners and educators alike.
Foundation Models for Spatio-Temporal Data Science: A Tutorial and Survey
Liang, Yuxuan, Wen, Haomin, Xia, Yutong, Jin, Ming, Yang, Bin, Salim, Flora, Wen, Qingsong, Pan, Shirui, Cong, Gao
Spatio-Temporal (ST) data science, which includes sensing, managing, and mining large-scale data across space and time, is fundamental to understanding complex systems in domains such as urban computing, climate science, and intelligent transportation. Traditional deep learning approaches have significantly advanced this field, particularly in the stage of ST data mining. However, these models remain task-specific and often require extensive labeled data. Inspired by the success of Foundation Models (FM), especially large language models, researchers have begun exploring the concept of Spatio-Temporal Foundation Models (STFMs) to enhance adaptability and generalization across diverse ST tasks. Unlike prior architectures, STFMs empower the entire workflow of ST data science, ranging from data sensing, management, to mining, thereby offering a more holistic and scalable approach. Despite rapid progress, a systematic study of STFMs for ST data science remains lacking. This survey aims to provide a comprehensive review of STFMs, categorizing existing methodologies and identifying key research directions to advance ST general intelligence.
A Survey on Trustworthy LLM Agents: Threats and Countermeasures
Yu, Miao, Meng, Fanci, Zhou, Xinyun, Wang, Shilong, Mao, Junyuan, Pang, Linsey, Chen, Tianlong, Wang, Kun, Li, Xinfeng, Zhang, Yongfeng, An, Bo, Wen, Qingsong
With the rapid evolution of Large Language Models (LLMs), LLM-based agents and Multi-agent Systems (MAS) have significantly expanded the capabilities of LLM ecosystems. This evolution stems from empowering LLMs with additional modules such as memory, tools, environment, and even other agents. However, this advancement has also introduced more complex issues of trustworthiness, which previous research focused solely on LLMs could not cover. In this survey, we propose the TrustAgent framework, a comprehensive study on the trustworthiness of agents, characterized by modular taxonomy, multi-dimensional connotations, and technical implementation. By thoroughly investigating and summarizing newly emerged attacks, defenses, and evaluation methods for agents and MAS, we extend the concept of Trustworthy LLM to the emerging paradigm of Trustworthy Agent. In TrustAgent, we begin by deconstructing and introducing various components of the Agent and MAS. Then, we categorize their trustworthiness into intrinsic (brain, memory, and tool) and extrinsic (user, agent, and environment) aspects. Subsequently, we delineate the multifaceted meanings of trustworthiness and elaborate on the implementation techniques of existing research related to these internal and external modules. Finally, we present our insights and outlook on this domain, aiming to provide guidance for future endeavors.
A Survey on Post-training of Large Language Models
Tie, Guiyao, Zhao, Zeli, Song, Dingjie, Wei, Fuyang, Zhou, Rong, Dai, Yurou, Yin, Wen, Yang, Zhejian, Yan, Jiangyue, Su, Yao, Dai, Zhenhan, Xie, Yifeng, Cao, Yihan, Sun, Lichao, Zhou, Pan, He, Lifang, Chen, Hechang, Zhang, Yu, Wen, Qingsong, Liu, Tianming, Gong, Neil Zhenqiang, Tang, Jiliang, Xiong, Caiming, Ji, Heng, Yu, Philip S., Gao, Jianfeng
The emergence of Large Language Models (LLMs) has fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration. However, their pre-trained architectures often reveal limitations in specialized contexts, including restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance. These challenges necessitate advanced post-training language models (PoLMs) to address these shortcomings, such as OpenAI-o1/o3 and DeepSeek-R1 (collectively known as Large Reasoning Models, or LRMs). This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Efficiency, which optimizes resource utilization amidst increasing complexity; and Integration and Adaptation, which extend capabilities across diverse modalities while addressing coherence issues. Charting progress from ChatGPT's foundational alignment strategies to DeepSeek-R1's innovative reasoning advancements, we illustrate how PoLMs leverage datasets to mitigate biases, deepen reasoning capabilities, and enhance domain adaptability. Our contributions include a pioneering synthesis of PoLM evolution, a structured taxonomy categorizing techniques and datasets, and a strategic agenda emphasizing the role of LRMs in improving reasoning proficiency and domain flexibility. As the first survey of its scope, this work consolidates recent PoLM advancements and establishes a rigorous intellectual framework for future research, fostering the development of LLMs that excel in precision, ethical robustness, and versatility across scientific and societal applications.
RCRank: Multimodal Ranking of Root Causes of Slow Queries in Cloud Database Systems
Ouyang, Biao, Zhang, Yingying, Cheng, Hanyin, Shu, Yang, Guo, Chenjuan, Yang, Bin, Wen, Qingsong, Fan, Lunting, Jensen, Christian S.
With the continued migration of storage to cloud database systems,the impact of slow queries in such systems on services and user experience is increasing. Root-cause diagnosis plays an indispensable role in facilitating slow-query detection and revision. This paper proposes a method capable of both identifying possible root cause types for slow queries and ranking these according to their potential for accelerating slow queries. This enables prioritizing root causes with the highest impact, in turn improving slow-query revision effectiveness. To enable more accurate and detailed diagnoses, we propose the multimodal Ranking for the Root Causes of slow queries (RCRank) framework, which formulates root cause analysis as a multimodal machine learning problem and leverages multimodal information from query statements, execution plans, execution logs, and key performance indicators. To obtain expressive embeddings from its heterogeneous multimodal input, RCRank integrates self-supervised pre-training that enhances cross-modal alignment and task relevance. Next, the framework integrates root-cause-adaptive cross Transformers that enable adaptive fusion of multimodal features with varying characteristics. Finally, the framework offers a unified model that features an impact-aware training objective for identifying and ranking root causes. We report on experiments on real and synthetic datasets, finding that RCRank is capable of consistently outperforming the state-of-the-art methods at root cause identification and ranking according to a range of metrics.
AgentSafe: Safeguarding Large Language Model-based Multi-agent Systems via Hierarchical Data Management
Mao, Junyuan, Meng, Fanci, Duan, Yifan, Yu, Miao, Jia, Xiaojun, Fang, Junfeng, Liang, Yuxuan, Wang, Kun, Wen, Qingsong
Large Language Model based multi-agent systems are revolutionizing autonomous communication and collaboration, yet they remain vulnerable to security threats like unauthorized access and data breaches. To address this, we introduce AgentSafe, a novel framework that enhances MAS security through hierarchical information management and memory protection. AgentSafe classifies information by security levels, restricting sensitive data access to authorized agents. AgentSafe incorporates two components: ThreatSieve, which secures communication by verifying information authority and preventing impersonation, and HierarCache, an adaptive memory management system that defends against unauthorized access and malicious poisoning, representing the first systematic defense for agent memory. Experiments across various LLMs show that AgentSafe significantly boosts system resilience, achieving defense success rates above 80% under adversarial conditions. Additionally, AgentSafe demonstrates scalability, maintaining robust performance as agent numbers and information complexity grow. Results underscore effectiveness of AgentSafe in securing MAS and its potential for real-world application.
Brain Foundation Models: A Survey on Advancements in Neural Signal Processing and Brain Discovery
Zhou, Xinliang, Liu, Chenyu, Chen, Zhisheng, Wang, Kun, Ding, Yi, Jia, Ziyu, Wen, Qingsong
Brain foundation models (BFMs) have emerged as a transformative paradigm in computational neuroscience, offering a revolutionary framework for processing diverse neural signals across different brain-related tasks. These models leverage large-scale pre-training techniques, allowing them to generalize effectively across multiple scenarios, tasks, and modalities, thus overcoming the traditional limitations faced by conventional artificial intelligence (AI) approaches in understanding complex brain data. By tapping into the power of pretrained models, BFMs provide a means to process neural data in a more unified manner, enabling advanced analysis and discovery in the field of neuroscience. In this survey, we define BFMs for the first time, providing a clear and concise framework for constructing and utilizing these models in various applications. We also examine the key principles and methodologies for developing these models, shedding light on how they transform the landscape of neural signal processing. This survey presents a comprehensive review of the latest advancements in BFMs, covering the most recent methodological innovations, novel views of application areas, and challenges in the field. Notably, we highlight the future directions and key challenges that need to be addressed to fully realize the potential of BFMs. These challenges include improving the quality of brain data, optimizing model architecture for better generalization, increasing training efficiency, and enhancing the interpretability and robustness of BFMs in real-world applications.