Watcharasupat, Karn N.
Separate This, and All of these Things Around It: Music Source Separation via Hyperellipsoidal Queries
Watcharasupat, Karn N., Lerch, Alexander
Music source separation is an audio-to-audio retrieval task of extracting one or more constituent components, or composites thereof, from a musical audio mixture. Each of these constituent components is often referred to as a "stem" in literature. Historically, music source separation has been dominated by a stem-based paradigm, leading to most state-of-the-art systems being either a collection of single-stem extraction models, or a tightly coupled system with a fixed, difficult-to-modify, set of supported stems. Combined with the limited data availability, advances in music source separation have thus been mostly limited to the "VDBO" set of stems: \textit{vocals}, \textit{drum}, \textit{bass}, and the catch-all \textit{others}. Recent work in music source separation has begun to challenge the fixed-stem paradigm, moving towards models able to extract any musical sound as long as this target type of sound could be specified to the model as an additional query input. We generalize this idea to a \textit{query-by-region} source separation system, specifying the target based on the query regardless of how many sound sources or which sound classes are contained within it. To do so, we propose the use of hyperellipsoidal regions as queries to allow for an intuitive yet easily parametrizable approach to specifying both the target (location) as well as its spread. Evaluation of the proposed system on the MoisesDB dataset demonstrated state-of-the-art performance of the proposed system both in terms of signal-to-noise ratios and retrieval metrics.
Uncertainty Estimation in the Real World: A Study on Music Emotion Recognition
Watcharasupat, Karn N., Ding, Yiwei, Ma, T. Aleksandra, Seshadri, Pavan, Lerch, Alexander
Any data annotation for subjective tasks shows potential variations between individuals. This is particularly true for annotations of emotional responses to musical stimuli. While older approaches to music emotion recognition systems frequently addressed this uncertainty problem through probabilistic modeling, modern systems based on neural networks tend to ignore the variability and focus only on predicting central tendencies of human subjective responses. In this work, we explore several methods for estimating not only the central tendencies of the subjective responses to a musical stimulus, but also for estimating the uncertainty associated with these responses. In particular, we investigate probabilistic loss functions and inference-time random sampling. Experimental results indicate that while the modeling of the central tendencies is achievable, modeling of the uncertainty in subjective responses proves significantly more challenging with currently available approaches even when empirical estimates of variations in the responses are available.
Remastering Divide and Remaster: A Cinematic Audio Source Separation Dataset with Multilingual Support
Watcharasupat, Karn N., Wu, Chih-Wei, Orife, Iroro
Cinematic audio source separation (CASS) is a relatively new subtask of audio source separation, concerned with the separation of a mixture into the dialogue, music, and effects stems. To date, only one publicly available dataset exists for CASS, that is, the Divide and Remaster (DnR) dataset, which is currently at version 2. While DnR v2 has been an incredibly useful resource for CASS, several areas of improvement have been identified, particularly through its use in the 2023 Sound Demixing Challenge. In this work, we develop version 3 of the DnR dataset, addressing issues relating to vocal content in non-dialogue stems, loudness distributions, mastering process, and linguistic diversity. In particular, the dialogue stem of DnR v3 includes speech content from more than 30 languages from multiple families including but not limited to the Germanic, Romance, Indo-Aryan, Dravidian, Malayo-Polynesian, and Bantu families. Benchmark results using the Bandit model indicated that training on multilingual data yields significant generalizability to the model even in languages with low data availability. Even in languages with high data availability, the multilingual model often performs on par or better than dedicated models trained on monolingual CASS datasets.
A Stem-Agnostic Single-Decoder System for Music Source Separation Beyond Four Stems
Watcharasupat, Karn N., Lerch, Alexander
Despite significant recent progress across multiple subtasks of audio source separation, few music source separation systems support separation beyond the four-stem vocals, drums, bass, and other (VDBO) setup. Of the very few current systems that support source separation beyond this setup, most continue to rely on an inflexible decoder setup that can only support a fixed pre-defined set of stems. Increasing stem support in these inflexible systems correspondingly requires increasing computational complexity, rendering extensions of these systems computationally infeasible for long-tail instruments. In this work, we propose Banquet, a system that allows source separation of multiple stems using just one decoder. A bandsplit source separation model is extended to work in a query-based setup in tandem with a music instrument recognition PaSST model. On the MoisesDB dataset, Banquet, at only 24.9 M trainable parameters, approached the performance level of the significantly more complex 6-stem Hybrid Transformer Demucs on VDBO stems and outperformed it on guitar and piano. The query-based setup allows for the separation of narrow instrument classes such as clean acoustic guitars, and can be successfully applied to the extraction of less common stems such as reeds and organs. Implementation is available at https://github.com/kwatcharasupat/query-bandit.
A Generalized Bandsplit Neural Network for Cinematic Audio Source Separation
Watcharasupat, Karn N., Wu, Chih-Wei, Ding, Yiwei, Orife, Iroro, Hipple, Aaron J., Williams, Phillip A., Kramer, Scott, Lerch, Alexander, Wolcott, William
Cinematic audio source separation is a relatively new subtask of audio source separation, with the aim of extracting the dialogue, music, and effects stems from their mixture. In this work, we developed a model generalizing the Bandsplit RNN for any complete or overcomplete partitions of the frequency axis. Psychoacoustically motivated frequency scales were used to inform the band definitions which are now defined with redundancy for more reliable feature extraction. A loss function motivated by the signal-to-noise ratio and the sparsity-promoting property of the 1-norm was proposed. We additionally exploit the information-sharing property of a common-encoder setup to reduce computational complexity during both training and inference, improve separation performance for hard-to-generalize classes of sounds, and allow flexibility during inference time with detachable decoders. Our best model sets the state of the art on the Divide and Remaster dataset with performance above the ideal ratio mask for the dialogue stem.
Autonomous In-Situ Soundscape Augmentation via Joint Selection of Masker and Gain
Watcharasupat, Karn N., Ooi, Kenneth, Lam, Bhan, Wong, Trevor, Ong, Zhen-Ting, Gan, Woon-Seng
The selection of maskers and playback gain levels in a soundscape augmentation system is crucial to its effectiveness in improving the overall acoustic comfort of a given environment. Traditionally, the selection of appropriate maskers and gain levels has been informed by expert opinion, which may not representative of the target population, or by listening tests, which can be time-consuming and labour-intensive. Furthermore, the resulting static choices of masker and gain are often inflexible to the dynamic nature of real-world soundscapes. In this work, we utilized a deep learning model to perform joint selection of the optimal masker and its gain level for a given soundscape. The proposed model was designed with highly modular building blocks, allowing for an optimized inference process that can quickly search through a large number of masker and gain combinations. In addition, we introduced the use of feature-domain soundscape augmentation conditioned on the digital gain level, eliminating the computationally expensive waveform-domain mixing process during inference time, as well as the tedious pre-calibration process required for new maskers. The proposed system was validated on a large-scale dataset of subjective responses to augmented soundscapes with more than 440 participants, ensuring the ability of the model to predict combined effect of the masker and its gain level on the perceptual pleasantness level.
Latte: Cross-framework Python Package for Evaluation of Latent-Based Generative Models
Watcharasupat, Karn N., Lee, Junyoung, Lerch, Alexander
Disentanglement learning is often used with encoder-decoder architectures to produce latent representations in the form of latent vectors or tensors in the bottleneck layer, such that each latent dimension has an approximately exclusive mapping to a semantic attribute of interest. These disentangled latent representations are particularly useful in the generative models that aim to produce samples with specific and controllable semantic attributes [3, 4]. With the growth of the fields comes the need for a reliable and consistent method of evaluation that allows for the comparison of different systems across a variety of metrics.
End-to-End Complex-Valued Multidilated Convolutional Neural Network for Joint Acoustic Echo Cancellation and Noise Suppression
Watcharasupat, Karn N., Nguyen, Thi Ngoc Tho, Gan, Woon-Seng, Zhao, Shengkui, Ma, Bin
Echo and noise suppression is an integral part of a full-duplex communication system. Many recent acoustic echo cancellation (AEC) systems rely on a separate adaptive filtering module for linear echo suppression and a neural module for residual echo suppression. However, not only do adaptive filtering modules require convergence and remain susceptible to changes in acoustic environments, but this two-stage framework also often introduces unnecessary delays to the AEC system when neural modules are already capable of both linear and nonlinear echo suppression. In this paper, we exploit the offset-compensating ability of complex time-frequency masks and propose an end-to-end complex-valued neural network architecture. The building block of the proposed model is a pseudocomplex extension based on the densely-connected multidilated DenseNet (D3Net) building block, resulting in a very small network of only 354K parameters. The architecture utilized the multi-resolution nature of the D3Net building blocks to eliminate the need for pooling, allowing the network to extract features using large receptive fields without any loss of output resolution. We also propose a dual-mask technique for joint echo and noise suppression with simultaneous speech enhancement. Evaluation on both synthetic and real test sets demonstrated promising results across multiple energy-based metrics and perceptual proxies.
Improving Polyphonic Sound Event Detection on Multichannel Recordings with the S{\o}rensen-Dice Coefficient Loss and Transfer Learning
Watcharasupat, Karn N., Nguyen, Thi Ngoc Tho, Nguyen, Ngoc Khanh, Lee, Zhen Jian, Jones, Douglas L., Gan, Woon Seng
The S{\o}rensen--Dice Coefficient has recently seen rising popularity as a loss function (also known as Dice loss) due to its robustness in tasks where the number of negative samples significantly exceeds that of positive samples, such as semantic segmentation, natural language processing, and sound event detection. Conventional training of polyphonic sound event detection systems with binary cross-entropy loss often results in suboptimal detection performance as the training is often overwhelmed by updates from negative samples. In this paper, we investigated the effect of the Dice loss, intra- and inter-modal transfer learning, data augmentation, and recording formats, on the performance of polyphonic sound event detection systems with multichannel inputs. Our analysis showed that polyphonic sound event detection systems trained with Dice loss consistently outperformed those trained with cross-entropy loss across different training settings and recording formats in terms of F1 score and error rate. We achieved further performance gains via the use of transfer learning and an appropriate combination of different data augmentation techniques.
What Makes Sound Event Localization and Detection Difficult? Insights from Error Analysis
Nguyen, Thi Ngoc Tho, Watcharasupat, Karn N., Lee, Zhen Jian, Nguyen, Ngoc Khanh, Jones, Douglas L., Gan, Woon Seng
Sound event localization and detection (SELD) is an emerging research topic that aims to unify the tasks of sound event detection and direction-of-arrival estimation. As a result, SELD inherits the challenges of both tasks, such as noise, reverberation, interference, polyphony, and non-stationarity of sound sources. Furthermore, SELD often faces an additional challenge of assigning correct correspondences between the detected sound classes and directions of arrival to multiple overlapping sound events. Previous studies have shown that unknown interferences in reverberant environments often cause major degradation in the performance of SELD systems. To further understand the challenges of the SELD task, we performed a detailed error analysis on two of our SELD systems, which both ranked second in the team category of DCASE SELD Challenge, one in 2020 and one in 2021. Experimental results indicate polyphony as the main challenge in SELD, due to the difficulty in detecting all sound events of interest. In addition, the SELD systems tend to make fewer errors for the polyphonic scenario that is dominant in the training set.