Wasserman, Larry
Assumption-Lean Post-Integrated Inference with Negative Control Outcomes
Du, Jin-Hong, Roeder, Kathryn, Wasserman, Larry
In the big data era, integrating information from multiple heterogeneous sources has become increasingly crucial for achieving larger sample sizes and more diverse study populations. The applications of data integration are in a variety of fields, including but not limited to, causal inference on heterogeneous populations (Shi et al., 2023), survey sampling (Yang et al., 2020), health policy (Paddock et al., 2024), retrospective psychometrics (Howe and Brown, 2023), and multi-omics biological science (Du et al., 2022). Data integration methods have been proposed to mitigate the unwanted effects of heterogeneous datasets and unmeasured covariates, recovering the common variation across datasets. However, a critical and often overlooked question is whether reliable statistical inference can be made from integrated data. Directly performing statistical inference on integrated outcomes and covariates of interests fails to account for the complex correlation structures introduced by the data integration process, often leading to improper analyses that incorrectly assume the corrected data points are independent (Li et al., 2023). While data integration is broadly utilized in various fields, our paper focuses on a challenging scenario with the presence of high-dimensional outcomes.
Causal Inference for Genomic Data with Multiple Heterogeneous Outcomes
Du, Jin-Hong, Zeng, Zhenghao, Kennedy, Edward H., Wasserman, Larry, Roeder, Kathryn
With the evolution of single-cell RNA sequencing techniques into a standard approach in genomics, it has become possible to conduct cohort-level causal inferences based on single-cell-level measurements. However, the individual gene expression levels of interest are not directly observable; instead, only repeated proxy measurements from each individual's cells are available, providing a derived outcome to estimate the underlying outcome for each of many genes. In this paper, we propose a generic semiparametric inference framework for doubly robust estimation with multiple derived outcomes, which also encompasses the usual setting of multiple outcomes when the response of each unit is available. To reliably quantify the causal effects of heterogeneous outcomes, we specialize the analysis to standardized average treatment effects and quantile treatment effects. Through this, we demonstrate the use of the semiparametric inferential results for doubly robust estimators derived from both Von Mises expansions and estimating equations. A multiple testing procedure based on Gaussian multiplier bootstrap is tailored for doubly robust estimators to control the false discovery exceedance rate. Applications in single-cell CRISPR perturbation analysis and individual-level differential expression analysis demonstrate the utility of the proposed methods and offer insights into the usage of different estimands for causal inference in genomics.
Double Cross-fit Doubly Robust Estimators: Beyond Series Regression
McClean, Alec, Balakrishnan, Sivaraman, Kennedy, Edward H., Wasserman, Larry
Doubly robust estimators with cross-fitting have gained popularity in causal inference due to their favorable structure-agnostic error guarantees. However, when additional structure, such as H\"{o}lder smoothness, is available then more accurate "double cross-fit doubly robust" (DCDR) estimators can be constructed by splitting the training data and undersmoothing nuisance function estimators on independent samples. We study a DCDR estimator of the Expected Conditional Covariance, a functional of interest in causal inference and conditional independence testing, and derive a series of increasingly powerful results with progressively stronger assumptions. We first provide a structure-agnostic error analysis for the DCDR estimator with no assumptions on the nuisance functions or their estimators. Then, assuming the nuisance functions are H\"{o}lder smooth, but without assuming knowledge of the true smoothness level or the covariate density, we establish that DCDR estimators with several linear smoothers are semiparametric efficient under minimal conditions and achieve fast convergence rates in the non-$\sqrt{n}$ regime. When the covariate density and smoothnesses are known, we propose a minimax rate-optimal DCDR estimator based on undersmoothed kernel regression. Moreover, we show an undersmoothed DCDR estimator satisfies a slower-than-$\sqrt{n}$ central limit theorem, and that inference is possible even in the non-$\sqrt{n}$ regime. Finally, we support our theoretical results with simulations, providing intuition for double cross-fitting and undersmoothing, demonstrating where our estimator achieves semiparametric efficiency while the usual "single cross-fit" estimator fails, and illustrating asymptotic normality for the undersmoothed DCDR estimator.
Semi-Supervised U-statistics
Kim, Ilmun, Wasserman, Larry, Balakrishnan, Sivaraman, Neykov, Matey
Semi-supervised datasets are ubiquitous across diverse domains where obtaining fully labeled data is costly or time-consuming. The prevalence of such datasets has consistently driven the demand for new tools and methods that exploit the potential of unlabeled data. Responding to this demand, we introduce semi-supervised U-statistics enhanced by the abundance of unlabeled data, and investigate their statistical properties. We show that the proposed approach is asymptotically Normal and exhibits notable efficiency gains over classical U-statistics by effectively integrating various powerful prediction tools into the framework. To understand the fundamental difficulty of the problem, we derive minimax lower bounds in semi-supervised settings and showcase that our procedure is semi-parametrically efficient under regularity conditions. Moreover, tailored to bivariate kernels, we propose a refined approach that outperforms the classical U-statistic across all degeneracy regimes, and demonstrate its optimality properties. Simulation studies are conducted to corroborate our findings and to further demonstrate our framework.
Simultaneous inference for generalized linear models with unmeasured confounders
Du, Jin-Hong, Wasserman, Larry, Roeder, Kathryn
Tens of thousands of simultaneous hypothesis tests are routinely performed in genomic studies to identify differentially expressed genes. However, due to unmeasured confounders, many standard statistical approaches may be substantially biased. This paper investigates the large-scale hypothesis testing problem for multivariate generalized linear models in the presence of confounding effects. Under arbitrary confounding mechanisms, we propose a unified statistical estimation and inference framework that harnesses orthogonal structures and integrates linear projections into three key stages. It begins by disentangling marginal and uncorrelated confounding effects to recover the latent coefficients. Subsequently, latent factors and primary effects are jointly estimated through lasso-type optimization. Finally, we incorporate projected and weighted bias-correction steps for hypothesis testing. Theoretically, we establish the identification conditions of various effects and non-asymptotic error bounds. We show effective Type-I error control of asymptotic $z$-tests as sample and response sizes approach infinity. Numerical experiments demonstrate that the proposed method controls the false discovery rate by the Benjamini-Hochberg procedure and is more powerful than alternative methods. By comparing single-cell RNA-seq counts from two groups of samples, we demonstrate the suitability of adjusting confounding effects when significant covariates are absent from the model.
The Fundamental Limits of Structure-Agnostic Functional Estimation
Balakrishnan, Sivaraman, Kennedy, Edward H., Wasserman, Larry
Many recent developments in causal inference, and functional estimation problems more generally, have been motivated by the fact that classical one-step (first-order) debiasing methods, or their more recent sample-split double machine-learning avatars, can outperform plugin estimators under surprisingly weak conditions. These first-order corrections improve on plugin estimators in a black-box fashion, and consequently are often used in conjunction with powerful off-the-shelf estimation methods. These first-order methods are however provably suboptimal in a minimax sense for functional estimation when the nuisance functions live in Holder-type function spaces. This suboptimality of first-order debiasing has motivated the development of "higher-order" debiasing methods. The resulting estimators are, in some cases, provably optimal over Holder-type spaces, but both the estimators which are minimax-optimal and their analyses are crucially tied to properties of the underlying function space. In this paper we investigate the fundamental limits of structure-agnostic functional estimation, where relatively weak conditions are placed on the underlying nuisance functions. We show that there is a strong sense in which existing first-order methods are optimal. We achieve this goal by providing a formalization of the problem of functional estimation with black-box nuisance function estimates, and deriving minimax lower bounds for this problem. Our results highlight some clear tradeoffs in functional estimation -- if we wish to remain agnostic to the underlying nuisance function spaces, impose only high-level rate conditions, and maintain compatibility with black-box nuisance estimators then first-order methods are optimal. When we have an understanding of the structure of the underlying nuisance functions then carefully constructed higher-order estimators can outperform first-order estimators.
Feature Importance: A Closer Look at Shapley Values and LOCO
Verdinelli, Isabella, Wasserman, Larry
There is much interest lately in explainability in statistics and machine learning. One aspect of explainability is to quantify the importance of various features (or covariates). Two popular methods for defining variable importance are LOCO (Leave Out COvariates) and Shapley Values. We take a look at the properties of these methods and their advantages and disadvantages. We are particularly interested in the effect of correlation between features which can obscure interpretability. Contrary to some claims, Shapley values do not eliminate feature correlation. We critique the game theoretic axioms for Shapley values and suggest some new axioms. We propose new, more statistically oriented axioms for feature importance and some measures that satisfy these axioms. However, correcting for correlation is a Faustian bargain: removing the effect of correlation creates other forms of bias. Ultimately, we recommend a slightly modified version of LOCO. We briefly consider how to modify Shapley values to better address feature correlation.
Data blurring: sample splitting a single sample
Leiner, James, Duan, Boyan, Wasserman, Larry, Ramdas, Aaditya
Suppose we observe a random vector $X$ from some distribution $P$ in a known family with unknown parameters. We ask the following question: when is it possible to split $X$ into two parts $f(X)$ and $g(X)$ such that neither part is sufficient to reconstruct $X$ by itself, but both together can recover $X$ fully, and the joint distribution of $(f(X),g(X))$ is tractable? As one example, if $X=(X_1,\dots,X_n)$ and $P$ is a product distribution, then for any $m
Decorrelated Variable Importance
Verdinelli, Isabella, Wasserman, Larry
Because of the widespread use of black box prediction methods such as random forests and neural nets, there is renewed interest in developing methods for quantifying variable importance as part of the broader goal of interpretable prediction. A popular approach is to define a variable importance parameter - known as LOCO (Leave Out COvariates) - based on dropping covariates from a regression model. This is essentially a nonparametric version of R-squared. This parameter is very general and can be estimated nonparametrically, but it can be hard to interpret because it is affected by correlation between covariates. We propose a method for mitigating the effect of correlation by defining a modified version of LOCO. This new parameter is difficult to estimate nonparametrically, but we show how to estimate it using semiparametric models.
Plugin Estimation of Smooth Optimal Transport Maps
Manole, Tudor, Balakrishnan, Sivaraman, Niles-Weed, Jonathan, Wasserman, Larry
We analyze a number of natural estimators for the optimal transport map between two distributions and show that they are minimax optimal. We adopt the plugin approach: our estimators are simply optimal couplings between measures derived from our observations, appropriately extended so that they define functions on $\mathbb{R}^d$. When the underlying map is assumed to be Lipschitz, we show that computing the optimal coupling between the empirical measures, and extending it using linear smoothers, already gives a minimax optimal estimator. When the underlying map enjoys higher regularity, we show that the optimal coupling between appropriate nonparametric density estimates yields faster rates. Our work also provides new bounds on the risk of corresponding plugin estimators for the quadratic Wasserstein distance, and we show how this problem relates to that of estimating optimal transport maps using stability arguments for smooth and strongly convex Brenier potentials. As an application of our results, we derive a central limit theorem for a density plugin estimator of the squared Wasserstein distance, which is centered at its population counterpart when the underlying distributions have sufficiently smooth densities. In contrast to known central limit theorems for empirical estimators, this result easily lends itself to statistical inference for Wasserstein distances.