Not enough data to create a plot.
Try a different view from the menu above.
Wang, Zhanyu
ER2Score: LLM-based Explainable and Customizable Metric for Assessing Radiology Reports with Reward-Control Loss
Liu, Yunyi, Li, Yingshu, Wang, Zhanyu, Liang, Xinyu, Liu, Lingqiao, Wang, Lei, Zhou, Luping
Automated radiology report generation (R2Gen) has advanced significantly, introducing challenges in accurate evaluation due to its complexity. Traditional metrics often fall short by relying on rigid word-matching or focusing only on pathological entities, leading to inconsistencies with human assessments. To bridge this gap, we introduce ER2Score, an automatic evaluation metric designed specifically for R2Gen. Our metric utilizes a reward model, guided by our margin-based reward enforcement loss, along with a tailored training data design that enables customization of evaluation criteria to suit user-defined needs. It not only scores reports according to user-specified criteria but also provides detailed sub-scores, enhancing interpretability and allowing users to adjust the criteria between different aspects of reports. Leveraging GPT-4, we designed an easy-to-use data generation pipeline, enabling us to produce extensive training data based on two distinct scoring systems, each containing reports of varying quality along with corresponding scores. These GPT-generated reports are then paired as accepted and rejected samples through our pairing rule to train an LLM towards our fine-grained reward model, which assigns higher rewards to the report with high quality. Our reward-control loss enables this model to simultaneously output multiple individual rewards corresponding to the number of evaluation criteria, with their summation as our final ER2Score. Our experiments demonstrate ER2Score's heightened correlation with human judgments and superior performance in model selection compared to traditional metrics. Notably, our model provides both an overall score and individual scores for each evaluation item, enhancing interpretability. We also demonstrate its flexible training across various evaluation systems.
MRScore: Evaluating Radiology Report Generation with LLM-based Reward System
Liu, Yunyi, Wang, Zhanyu, Li, Yingshu, Liang, Xinyu, Liu, Lingqiao, Wang, Lei, Zhou, Luping
In recent years, automated radiology report generation has experienced significant growth. This paper introduces MRScore, an automatic evaluation metric tailored for radiology report generation by leveraging Large Language Models (LLMs). Conventional NLG (natural language generation) metrics like BLEU are inadequate for accurately assessing the generated radiology reports, as systematically demonstrated by our observations within this paper. To address this challenge, we collaborated with radiologists to develop a framework that guides LLMs for radiology report evaluation, ensuring alignment with human analysis. Our framework includes two key components: i) utilizing GPT to generate large amounts of training data, i.e., reports with different qualities, and ii) pairing GPT-generated reports as accepted and rejected samples and training LLMs to produce MRScore as the model reward. Our experiments demonstrate MRScore's higher correlation with human judgments and superior performance in model selection compared to traditional metrics. Our code and datasets will be available on GitHub. Keywords: Radiology Report Generation Evaluation metrics Large Language Models Reward Model.
A Systematic Evaluation of GPT-4V's Multimodal Capability for Medical Image Analysis
Li, Yingshu, Liu, Yunyi, Wang, Zhanyu, Liang, Xinyu, Wang, Lei, Liu, Lingqiao, Cui, Leyang, Tu, Zhaopeng, Wang, Longyue, Zhou, Luping
This work conducts an evaluation of GPT-4V's multimodal capability for medical image analysis, with a focus on three representative tasks of radiology report generation, medical visual question answering, and medical visual grounding. For the evaluation, a set of prompts is designed for each task to induce the corresponding capability of GPT-4V to produce sufficiently good outputs. Three evaluation ways including quantitative analysis, human evaluation, and case study are employed to achieve an in-depth and extensive evaluation. Our evaluation shows that GPT-4V excels in understanding medical images and is able to generate high-quality radiology reports and effectively answer questions about medical images. Meanwhile, it is found that its performance for medical visual grounding needs to be substantially improved. In addition, we observe the discrepancy between the evaluation outcome from quantitative analysis and that from human evaluation. This discrepancy suggests the limitations of conventional metrics in assessing the performance of large language models like GPT-4V and the necessity of developing new metrics for automatic quantitative analysis.
Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large Language Models
Liu, Bingshuai, Lyu, Chenyang, Min, Zijun, Wang, Zhanyu, Su, Jinsong, Wang, Longyue
The advancement of Large Language Models (LLMs) has brought substantial attention to the Chain of Thought (CoT) approach Wei et al. [2022a], primarily due to its ability to enhance the capability of LLMs on tasks requiring complex reasoning. Moreover, the significance of CoT approaches extends to the application of LLMs for multi-modal tasks, such as multi-modal question answering. However, the selection of optimal CoT demonstration examples in multi-modal reasoning for LLMs remains less explored for LLMs due to the inherent complexity of multi-modal examples. In this paper, we introduce a novel approach that addresses this challenge by using retrieval mechanisms to dynamically and automatically select demonstration examples based on cross-modal similarities. This method aims to refine the CoT reasoning process in multi-modal scenarios via informing LLMs with more relevant and informative examples. Furthermore, we employ a stratified sampling method categorising demonstration examples into groups based on their types and retrieving examples from different groups respectively to promote the diversity of demonstration examples. Through a series of experiments, we demonstrate that our approach significantly improves the performance of LLMs, achieving state-of-the-art results in multi-modal reasoning tasks. Specifically, our methods demonstrate significant advancements on the ScienceQA dataset. While our method based on ChatGPT outperforms the Chameleon (ChatGPT) by 2.74% with an accuracy of 82.67%, the GPT4-based approach surpasses the Chameleon (GPT-4) by 0.89%, achieving 87.43% on accuracy under the same setting.
Q2ATransformer: Improving Medical VQA via an Answer Querying Decoder
Liu, Yunyi, Wang, Zhanyu, Xu, Dong, Zhou, Luping
Medical Visual Question Answering (VQA) systems play a supporting role to understand clinic-relevant information carried by medical images. The questions to a medical image include two categories: close-end (such as Yes/No question) and open-end. To obtain answers, the majority of the existing medical VQA methods relies on classification approaches, while a few works attempt to use generation approaches or a mixture of the two. The classification approaches are relatively simple but perform poorly on long open-end questions. To bridge this gap, in this paper, we propose a new Transformer based framework for medical VQA (named as Q2ATransformer), which integrates the advantages of both the classification and the generation approaches and provides a unified treatment for the close-end and open-end questions. Specifically, we introduce an additional Transformer decoder with a set of learnable candidate answer embeddings to query the existence of each answer class to a given image-question pair. Through the Transformer attention, the candidate answer embeddings interact with the fused features of the image-question pair to make the decision. In this way, despite being a classification-based approach, our method provides a mechanism to interact with the answer information for prediction like the generation-based approaches. On the other hand, by classification, we mitigate the task difficulty by reducing the search space of answers. Our method achieves new state-of-the-art performance on two medical VQA benchmarks. Especially, for the open-end questions, we achieve 79.19% on VQA-RAD and 54.85% on PathVQA, with 16.09% and 41.45% absolute improvements, respectively.
Differentially Private Bootstrap: New Privacy Analysis and Inference Strategies
Wang, Zhanyu, Cheng, Guang, Awan, Jordan
Differentially private (DP) mechanisms protect individual-level information by introducing randomness into the statistical analysis procedure. Despite the availability of numerous DP tools, there remains a lack of general techniques for conducting statistical inference under DP. We examine a DP bootstrap procedure that releases multiple private bootstrap estimates to infer the sampling distribution and construct confidence intervals (CIs). Our privacy analysis presents new results on the privacy cost of a single DP bootstrap estimate, applicable to any DP mechanisms, and identifies some misapplications of the bootstrap in the existing literature. Using the Gaussian-DP (GDP) framework (Dong et al.,2022), we show that the release of $B$ DP bootstrap estimates from mechanisms satisfying $(\mu/\sqrt{(2-2/\mathrm{e})B})$-GDP asymptotically satisfies $\mu$-GDP as $B$ goes to infinity. Moreover, we use deconvolution with the DP bootstrap estimates to accurately infer the sampling distribution, which is novel in DP. We derive CIs from our density estimate for tasks such as population mean estimation, logistic regression, and quantile regression, and we compare them to existing methods using simulations and real-world experiments on 2016 Canada Census data. Our private CIs achieve the nominal coverage level and offer the first approach to private inference for quantile regression.
MICO: Selective Search with Mutual Information Co-training
Wang, Zhanyu, Zhang, Xiao, Yun, Hyokun, Teo, Choon Hui, Chilimbi, Trishul
In contrast to traditional exhaustive search, selective search first clusters documents into several groups before all the documents are searched exhaustively by a query, to limit the search executed within one group or only a few groups. Selective search is designed to reduce the latency and computation in modern large-scale search systems. In this study, we propose MICO, a Mutual Information CO-training framework for selective search with minimal supervision using the search logs. After training, MICO does not only cluster the documents, but also routes unseen queries to the relevant clusters for efficient retrieval. In our empirical experiments, MICO significantly improves the performance on multiple metrics of selective search and outperforms a number of existing competitive baselines.
Variance Reduction on Adaptive Stochastic Mirror Descent
Li, Wenjie, Wang, Zhanyu, Zhang, Yichen, Cheng, Guang
We study the idea of variance reduction applied to adaptive stochastic mirror descent algorithms in nonsmooth nonconvex finite-sum optimization problems. We propose a simple yet generalized adaptive mirror descent algorithm with variance reduction named SVRAMD and provide its convergence analysis in different settings. We prove that variance reduction reduces the gradient complexity of most adaptive mirror descent algorithms and boost their convergence. In particular, our general theory implies variance reduction can be applied to algorithms using time-varying step sizes and self-adaptive algorithms such as AdaGrad and RMSProp. Moreover, our convergence rates recover the best existing rates of non-adaptive algorithms. We check the validity of our claims using experiments in deep learning.
Directional Pruning of Deep Neural Networks
Chao, Shih-Kang, Wang, Zhanyu, Xing, Yue, Cheng, Guang
In the light of the fact that the stochastic gradient descent (SGD) often finds a flat minimum valley in the training loss, we propose a novel directional pruning method which searches for a sparse minimizer in or close to that flat region. The proposed pruning method does not require retraining or the expert knowledge on the sparsity level. To overcome the computational formidability of estimating the flat directions, we propose to use a carefully tuned $\ell_1$ proximal gradient algorithm which can provably achieve the directional pruning with a small learning rate after sufficient training. The empirical results demonstrate the promising results of our solution in highly sparse regime (92% sparsity) among many existing pruning methods on the ResNet50 with the ImageNet, while using only a slightly higher wall time and memory footprint than the SGD. Using the VGG16 and the wide ResNet 28x10 on the CIFAR-10 and CIFAR-100, we demonstrate that our solution reaches the same minima valley as the SGD, and the minima found by our solution and the SGD do not deviate in directions that impact the training loss. The code that reproduces the results of this paper is available at https://github.com/donlan2710/gRDA-Optimizer/tree/master/directional_pruning.
Online Regularization for High-Dimensional Dynamic Pricing Algorithms
Wang, Chi-Hua, Wang, Zhanyu, Sun, Will Wei, Cheng, Guang
We propose a novel \textit{online regularization} scheme for revenue-maximization in high-dimensional dynamic pricing algorithms. The online regularization scheme equips the proposed optimistic online regularized maximum likelihood pricing (\texttt{OORMLP}) algorithm with three major advantages: encode market noise knowledge into pricing process optimism; empower online statistical learning with always-validity over all decision points; envelop prediction error process with time-uniform non-asymptotic oracle inequalities. This type of non-asymptotic inference results allows us to design safer and more robust dynamic pricing algorithms in practice. In theory, the proposed \texttt{OORMLP} algorithm exploits the sparsity structure of high-dimensional models and obtains a logarithmic regret in a decision horizon. These theoretical advances are made possible by proposing an optimistic online LASSO procedure that resolves dynamic pricing problems at the \textit{process} level, based on a novel use of non-asymptotic martingale concentration. In experiments, we evaluate \texttt{OORMLP} in different synthetic pricing problem settings and observe that \texttt{OORMLP} performs better than \texttt{RMLP} proposed in \cite{javanmard2019dynamic}.