Goto

Collaborating Authors

 Wang, Zhangyang


PIPA: Preference Alignment as Prior-Informed Statistical Estimation

arXiv.org Machine Learning

Offline preference alignment for language models such as Direct Preference Optimization (DPO) is favored for its effectiveness and simplicity, eliminating the need for costly reinforcement learning. Various offline algorithms have been developed for different data settings, yet they lack a unified understanding. In this study, we introduce Pior-Informed Preference Alignment (PIPA), a unified, RL-free probabilistic framework that formulates language model preference alignment as a Maximum Likelihood Estimation (MLE) problem with prior constraints. This method effectively accommodates both paired and unpaired data, as well as answer and step-level annotations. We illustrate that DPO and KTO are special cases with different prior constraints within our framework. By integrating different types of prior information, we developed two variations of PIPA: PIPA-M and PIPA-N. Both algorithms demonstrate a $3\sim10\%$ performance enhancement on the GSM8K and MATH benchmarks across all configurations, achieving these gains without additional training or computational costs compared to existing algorithms.


LLM-AutoDiff: Auto-Differentiate Any LLM Workflow

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have reshaped natural language processing, powering applications from multi-hop retrieval and question answering to autonomous agent workflows. Yet, prompt engineering -- the task of crafting textual inputs to effectively direct LLMs -- remains difficult and labor-intensive, particularly for complex pipelines that combine multiple LLM calls with functional operations like retrieval and data formatting. We introduce LLM-AutoDiff: a novel framework for Automatic Prompt Engineering (APE) that extends textual gradient-based methods (such as Text-Grad) to multi-component, potentially cyclic LLM architectures. Implemented within the AdalFlow library, LLM-AutoDiff treats each textual input as a trainable parameter and uses a frozen backward engine LLM to generate feedback-akin to textual gradients -- that guide iterative prompt updates. Unlike prior single-node approaches, LLM-AutoDiff inherently accommodates functional nodes, preserves time-sequential behavior in repeated calls (e.g., multi-hop loops), and combats the "lost-in-the-middle" problem by isolating distinct sub-prompts (instructions, formats, or few-shot examples). It further boosts training efficiency by focusing on error-prone samples through selective gradient computation. Across diverse tasks, including single-step classification, multi-hop retrieval-based QA, and agent-driven pipelines, LLM-AutoDiff consistently outperforms existing textual gradient baselines in both accuracy and training cost. By unifying prompt optimization through a graph-centric lens, LLM-AutoDiff offers a powerful new paradigm for scaling and automating LLM workflows - mirroring the transformative role that automatic differentiation libraries have long played in neural network research.


SPAM: Spike-Aware Adam with Momentum Reset for Stable LLM Training

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated exceptional performance across diverse tasks, yet their training remains highly resource-intensive and susceptible to critical challenges such as training instability. A predominant source of this instability stems from gradient and loss spikes, which disrupt the learning process, often leading to costly interventions like checkpoint recovery and experiment restarts, further amplifying inefficiencies. This paper presents a comprehensive investigation into gradient spikes observed during LLM training, revealing their prevalence across multiple architectures and datasets. Our analysis shows that these spikes can be up to $1000\times$ larger than typical gradients, substantially deteriorating model performance. To address this issue, we propose Spike-Aware Adam with Momentum Reset SPAM, a novel optimizer designed to counteract gradient spikes through momentum reset and spike-aware gradient clipping. Extensive experiments, including both pre-training and fine-tuning, demonstrate that SPAM consistently surpasses Adam and its variants across various tasks, including (1) LLM pre-training from 60M to 1B, (2) 4-bit LLM pre-training,(3) reinforcement learning, and (4) Time Series Forecasting. Additionally, SPAM facilitates memory-efficient training by enabling sparse momentum, where only a subset of momentum terms are maintained and updated. When operating under memory constraints, SPAM outperforms state-of-the-art memory-efficient optimizers such as GaLore and Adam-Mini. Our work underscores the importance of mitigating gradient spikes in LLM training and introduces an effective optimization strategy that enhances both training stability and resource efficiency at scale. Code is available at https://github.com/TianjinYellow/SPAM-Optimizer.git


InstantNet: Automated Generation and Deployment of Instantaneously Switchable-Precision Networks

arXiv.org Artificial Intelligence

The promise of Deep Neural Network (DNN) powered Internet of Thing (IoT) devices has motivated a tremendous demand for automated solutions to enable fast development and deployment of efficient (1) DNNs equipped with instantaneous accuracy-efficiency trade-off capability to accommodate the time-varying resources at IoT devices and (2) dataflows to optimize DNNs' execution efficiency on different devices. Therefore, we propose InstantNet to automatically generate and deploy instantaneously switchable-precision networks which operate at variable bit-widths. Extensive experiments show that the proposed InstantNet consistently outperforms state-of-the-art designs.


AutoGAN-Distiller: Searching to Compress Generative Adversarial Networks

arXiv.org Artificial Intelligence

The compression of Generative Adversarial Networks (GANs) has lately drawn attention, due to the increasing demand for deploying GANs into mobile devices for numerous applications such as image translation, enhancement and editing. However, compared to the substantial efforts to compressing other deep models, the research on compressing GANs (usually the generators) remains at its infancy stage. Existing GAN compression algorithms are limited to handling specific GAN architectures and losses. Inspired by the recent success of AutoML in deep compression, we introduce AutoML to GAN compression and develop an AutoGAN-Distiller (AGD) framework. Starting with a specifically designed efficient search space, AGD performs an end-to-end discovery for new efficient generators, given the target computational resource constraints. The search is guided by the original GAN model via knowledge distillation, therefore fulfilling the compression. AGD is fully automatic, standalone (i.e., needing no trained discriminators), and generically applicable to various GAN models. We evaluate AGD in two representative GAN tasks: image translation and super resolution. Without bells and whistles, AGD yields remarkably lightweight yet more competitive compressed models, that largely outperform existing alternatives. Our codes and pretrained models are available at https://github.com/TAMU-VITA/AGD.


Rethinking Addressing in Language Models via Contexualized Equivariant Positional Encoding

arXiv.org Artificial Intelligence

Transformers rely on both content-based and position-based addressing mechanisms to make predictions, but existing positional encoding techniques often diminish the effectiveness of position-based addressing. Many current methods enforce rigid patterns in attention maps, limiting the ability to model long-range dependencies and adapt to diverse tasks. Additionally, most positional encodings are learned as general biases, lacking the specialization required for different instances within a dataset. To address this, we propose con$\textbf{T}$extualized equivari$\textbf{A}$nt $\textbf{P}$osition $\textbf{E}$mbedding ($\textbf{TAPE}$), a novel framework that enhances positional embeddings by incorporating sequence content across layers. TAPE introduces dynamic, context-aware positional encodings, overcoming the constraints of traditional fixed patterns. By enforcing permutation and orthogonal equivariance, TAPE ensures the stability of positional encodings during updates, improving robustness and adaptability. Our method can be easily integrated into pre-trained transformers, offering parameter-efficient fine-tuning with minimal overhead. Extensive experiments shows that TAPE achieves superior performance in language modeling, arithmetic reasoning, and long-context retrieval tasks compared to existing positional embedding techniques.


Understanding and Mitigating Bottlenecks of State Space Models through the Lens of Recency and Over-smoothing

arXiv.org Artificial Intelligence

Structured State Space Models (SSMs) have emerged as alternatives to transformers. While SSMs are often regarded as effective in capturing long-sequence dependencies, we rigorously demonstrate that they are inherently limited by strong recency bias. Our empirical studies also reveal that this bias impairs the models' ability to recall distant information and introduces robustness issues. Our scaling experiments then discovered that deeper structures in SSMs can facilitate the learning of long contexts. However, subsequent theoretical analysis reveals that as SSMs increase in depth, they exhibit another inevitable tendency toward over-smoothing, e.g., token representations becoming increasingly indistinguishable. This fundamental dilemma between recency and over-smoothing hinders the scalability of existing SSMs. Inspired by our theoretical findings, we propose to polarize two channels of the state transition matrices in SSMs, setting them to zero and one, respectively, simultaneously addressing recency bias and over-smoothing. Experiments demonstrate that our polarization technique consistently enhances the associative recall accuracy of long-range tokens and unlocks SSMs to benefit further from deeper architectures. All source codes are released at https://github.com/VITA-Group/SSM-Bottleneck.


Enhancing Item Tokenization for Generative Recommendation through Self-Improvement

arXiv.org Artificial Intelligence

Generative recommendation systems, driven by large language models (LLMs), present an innovative approach to predicting user preferences by modeling items as token sequences and generating recommendations in a generative manner. A critical challenge in this approach is the effective tokenization of items, ensuring that they are represented in a form compatible with LLMs. Current item tokenization methods include using text descriptions, numerical strings, or sequences of discrete tokens. While text-based representations integrate seamlessly with LLM tokenization, they are often too lengthy, leading to inefficiencies and complicating accurate generation. Numerical strings, while concise, lack semantic depth and fail to capture meaningful item relationships. Tokenizing items as sequences of newly defined tokens has gained traction, but it often requires external models or algorithms for token assignment. These external processes may not align with the LLM's internal pretrained tokenization schema, leading to inconsistencies and reduced model performance. To address these limitations, we propose a self-improving item tokenization method that allows the LLM to refine its own item tokenizations during training process. Our approach starts with item tokenizations generated by any external model and periodically adjusts these tokenizations based on the LLM's learned patterns. Such alignment process ensures consistency between the tokenization and the LLM's internal understanding of the items, leading to more accurate recommendations. Furthermore, our method is simple to implement and can be integrated as a plug-and-play enhancement into existing generative recommendation systems. Experimental results on multiple datasets and using various initial tokenization strategies demonstrate the effectiveness of our method, with an average improvement of 8\% in recommendation performance.


AutoTrust: Benchmarking Trustworthiness in Large Vision Language Models for Autonomous Driving

arXiv.org Artificial Intelligence

Recent advancements in large vision language models (VLMs) tailored for autonomous driving (AD) have shown strong scene understanding and reasoning capabilities, making them undeniable candidates for end-to-end driving systems. However, limited work exists on studying the trustworthiness of DriveVLMs -- a critical factor that directly impacts public transportation safety. In this paper, we introduce AutoTrust, a comprehensive trustworthiness benchmark for large vision-language models in autonomous driving (DriveVLMs), considering diverse perspectives -- including trustfulness, safety, robustness, privacy, and fairness. We constructed the largest visual question-answering dataset for investigating trustworthiness issues in driving scenarios, comprising over 10k unique scenes and 18k queries. We evaluated six publicly available VLMs, spanning from generalist to specialist, from open-source to commercial models. Our exhaustive evaluations have unveiled previously undiscovered vulnerabilities of DriveVLMs to trustworthiness threats. Specifically, we found that the general VLMs like LLaVA-v1.6 and GPT-4o-mini surprisingly outperform specialized models fine-tuned for driving in terms of overall trustworthiness. DriveVLMs like DriveLM-Agent are particularly vulnerable to disclosing sensitive information. Additionally, both generalist and specialist VLMs remain susceptible to adversarial attacks and struggle to ensure unbiased decision-making across diverse environments and populations. Our findings call for immediate and decisive action to address the trustworthiness of DriveVLMs -- an issue of critical importance to public safety and the welfare of all citizens relying on autonomous transportation systems. Our benchmark is publicly available at \url{https://github.com/taco-group/AutoTrust}, and the leaderboard is released at \url{https://taco-group.github.io/AutoTrust/}.


APOLLO: SGD-like Memory, AdamW-level Performance

arXiv.org Artificial Intelligence

Large language models (LLMs) are notoriously memory-intensive during training, particularly with the popular AdamW optimizer. This memory burden necessitates using more or higher-end GPUs or reducing batch sizes, limiting training scalability and throughput. To address this, various memory-efficient optimizers have been proposed to reduce optimizer memory usage. However, they face critical challenges: (i) reliance on costly SVD operations; (ii) significant performance trade-offs compared to AdamW; and (iii) still substantial optimizer memory overhead to maintain competitive performance. In this work, we identify that AdamW's learning rate adaptation rule can be effectively coarsened as a structured learning rate update. Based on this insight, we propose Approximated Gradient Scaling for Memory-Efficient LLM Optimization (APOLLO), which approximates learning rate scaling using an auxiliary low-rank optimizer state based on pure random projection. This structured learning rate update rule makes APOLLO highly tolerant to further memory reductions while delivering comparable pre-training performance. Even its rank-1 variant, APOLLO-Mini, achieves superior pre-training performance compared to AdamW with SGD-level memory costs. Extensive experiments demonstrate that the APOLLO series performs on-par with or better than AdamW, while achieving greater memory savings by nearly eliminating the optimization states of AdamW. These savings provide significant system-level benefits: (1) Enhanced Throughput: 3x throughput on an 8xA100-80GB setup compared to AdamW by supporting 4x larger batch sizes. (2) Improved Model Scalability: Pre-training LLaMA-13B with naive DDP on A100-80GB GPUs without system-level optimizations. (3) Low-End GPU Friendly Pre-training: Pre-training LLaMA-7B on a single GPU using less than 12 GB of memory with weight quantization.