Goto

Collaborating Authors

 Wang, Yuping


Re-Align: Aligning Vision Language Models via Retrieval-Augmented Direct Preference Optimization

arXiv.org Artificial Intelligence

The emergence of large Vision Language Models (VLMs) has broadened the scope and capabilities of single-modal Large Language Models (LLMs) by integrating visual modalities, thereby unlocking transformative cross-modal applications in a variety of real-world scenarios. Despite their impressive performance, VLMs are prone to significant hallucinations, particularly in the form of cross-modal inconsistencies. Building on the success of Reinforcement Learning from Human Feedback (RLHF) in aligning LLMs, recent advancements have focused on applying direct preference optimization (DPO) on carefully curated datasets to mitigate these issues. Yet, such approaches typically introduce preference signals in a brute-force manner, neglecting the crucial role of visual information in the alignment process. In this paper, we introduce Re-Align, a novel alignment framework that leverages image retrieval to construct a dual-preference dataset, effectively incorporating both textual and visual preference signals. We further introduce rDPO, an extension of the standard direct preference optimization that incorporates an additional visual preference objective during fine-tuning. Our experimental results demonstrate that Re-Align not only mitigates hallucinations more effectively than previous methods but also yields significant performance gains in general visual question-answering (VQA) tasks. Moreover, we show that Re-Align maintains robustness and scalability across a wide range of VLM sizes and architectures. This work represents a significant step forward in aligning multimodal LLMs, paving the way for more reliable and effective cross-modal applications. We release all the code in https://github.com/taco-group/Re-Align.


DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation

arXiv.org Artificial Intelligence

Several recent studies have attempted to autoregressively generate continuous speech representations without discrete speech tokens by combining diffusion and autoregressive models, yet they often face challenges with excessive computational loads or suboptimal outcomes. In this work, we propose Diffusion Transformer Autoregressive Modeling (DiTAR), a patch-based autoregressive framework combining a language model with a diffusion transformer. This approach significantly enhances the efficacy of autoregressive models for continuous tokens and reduces computational demands. DiTAR utilizes a divide-and-conquer strategy for patch generation, where the language model processes aggregated patch embeddings and the diffusion transformer subsequently generates the next patch based on the output of the language model. For inference, we propose defining temperature as the time point of introducing noise during the reverse diffusion ODE to balance diversity and determinism. We also show in the extensive scaling analysis that DiTAR has superb scalability. In zero-shot speech generation, DiTAR achieves state-of-the-art performance in robustness, speaker similarity, and naturalness.


A Privacy-Preserving Domain Adversarial Federated learning for multi-site brain functional connectivity analysis

arXiv.org Artificial Intelligence

Resting-state functional magnetic resonance imaging (rs-fMRI) and its derived functional connectivity networks (FCNs) have become critical for understanding neurological disorders. However, collaborative analyses and the generalizability of models still face significant challenges due to privacy regulations and the non-IID (non-independent and identically distributed) property of multiple data sources. To mitigate these difficulties, we propose Domain Adversarial Federated Learning (DAFed), a novel federated deep learning framework specifically designed for non-IID fMRI data analysis in multi-site settings. DAFed addresses these challenges through feature disentanglement, decomposing the latent feature space into domain-invariant and domain-specific components, to ensure robust global learning while preserving local data specificity. Furthermore, adversarial training facilitates effective knowledge transfer between labeled and unlabeled datasets, while a contrastive learning module enhances the global representation of domain-invariant features. We evaluated DAFed on the diagnosis of autism spectrum disorder (ASD) and further validated its generalizability in the classification of Alzheimer's disease (AD), demonstrating its superior classification accuracy compared to state-of-the-art methods. Additionally, an enhanced Score-CAM module identifies key brain regions and functional connectivity significantly associated with ASD and mild cognitive impairment (MCI), respectively, uncovering shared neurobiological patterns across sites. These findings highlight the potential of DAFed to advance multi-site collaborative research in neuroimaging while protecting data confidentiality. Introduction Resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a powerful and non-invasive technique for detecting abnormal brain activity [1]. Functional connectivity networks (FCNs), derived from rs-fMRI data, quantify temporal correlations between functional interactions in different brain regions, which are extensively utilized in studies of neurological disorders and mental illnesses [2, 3]. Recently, deep learning approaches have shown remarkable potential in analyzing fMRI data and FCNs, enabling significant breakthroughs in understanding brain function [4, 5]. Despite significant advancements in deep learning models, concerns over patient privacy and legal restrictions limit data sharing across institutions. This limitation poses challenges to the reproducibility and generalizability of data-driven approaches across diverse datasets [6, 7].


Audio-CoT: Exploring Chain-of-Thought Reasoning in Large Audio Language Model

arXiv.org Artificial Intelligence

Large Audio-Language Models (LALMs) have demonstrated remarkable performance in tasks involving audio perception and understanding, such as speech recognition and audio captioning. However, their reasoning capabilities - critical for solving complex real-world problems - remain underexplored. In this work, we conduct the first exploration into integrating Chain-of-Thought (CoT) reasoning into LALMs to enhance their reasoning ability across auditory modalities. We evaluate representative CoT methods, analyzing their performance in both information extraction and reasoning tasks across sound, music, and speech domains. Our findings reveal that CoT methods significantly improve performance on easy and medium tasks but encounter challenges with hard tasks, where reasoning chains can confuse the model rather than improve accuracy. Additionally, we identify a positive correlation between reasoning path length and accuracy, demonstrating the potential of scaling inference for advanced instruction-following and reasoning. This study not only highlights the promise of CoT in enhancing LALM reasoning capabilities but also identifies key limitations and provides actionable directions for future research.


OpenEMMA: Open-Source Multimodal Model for End-to-End Autonomous Driving

arXiv.org Artificial Intelligence

Since the advent of Multimodal Large Language Models (MLLMs), they have made a significant impact across a wide range of real-world applications, particularly in Autonomous Driving (AD). Their ability to process complex visual data and reason about intricate driving scenarios has paved the way for a new paradigm in end-to-end AD systems. However, the progress of developing end-to-end models for AD has been slow, as existing fine-tuning methods demand substantial resources, including extensive computational power, large-scale datasets, and significant funding. Drawing inspiration from recent advancements in inference computing, we propose OpenEMMA, an open-source end-to-end framework based on MLLMs. By incorporating the Chain-of-Thought reasoning process, OpenEMMA achieves significant improvements compared to the baseline when leveraging a diverse range of MLLMs. Furthermore, OpenEMMA demonstrates effectiveness, generalizability, and robustness across a variety of challenging driving scenarios, offering a more efficient and effective approach to autonomous driving. We release all the codes in https://github.com/taco-group/OpenEMMA.


Open Challenges and Opportunities in Federated Foundation Models Towards Biomedical Healthcare

arXiv.org Artificial Intelligence

This survey explores the transformative impact of foundation models (FMs) in artificial intelligence, focusing on their integration with federated learning (FL) for advancing biomedical research. Foundation models such as ChatGPT, LLaMa, and CLIP, which are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback, represent significant advancements in machine learning. These models, with their ability to generate coherent text and realistic images, are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions. The incorporation of FL with these sophisticated models presents a promising strategy to harness their analytical power while safeguarding the privacy of sensitive medical data. This approach not only enhances the capabilities of FMs in medical diagnostics and personalized treatment but also addresses critical concerns about data privacy and security in healthcare. This survey reviews the current applications of FMs in federated settings, underscores the challenges, and identifies future research directions including scaling FMs, managing data diversity, and enhancing communication efficiency within FL frameworks. The objective is to encourage further research into the combined potential of FMs and FL, laying the groundwork for groundbreaking healthcare innovations.


VoiceShop: A Unified Speech-to-Speech Framework for Identity-Preserving Zero-Shot Voice Editing

arXiv.org Artificial Intelligence

We present VoiceShop, a novel speech-to-speech framework that can modify multiple attributes of speech, such as age, gender, accent, and speech style, in a single forward pass while preserving the input speaker's timbre. Previous works have been constrained to specialized models that can only edit these attributes individually and suffer from the following pitfalls: the magnitude of the conversion effect is weak, there is no zero-shot capability for out-of-distribution speakers, or the synthesized outputs exhibit undesirable timbre leakage. Our work proposes solutions for each of these issues in a simple modular framework based on a conditional diffusion backbone model with optional normalizing flow-based and sequence-to-sequence speaker attribute-editing modules, whose components can be combined or removed during inference to meet a wide array of tasks without additional model finetuning. Audio samples are available at \url{https://voiceshopai.github.io}.


CMP: Cooperative Motion Prediction with Multi-Agent Communication

arXiv.org Artificial Intelligence

The confluence of the advancement of Autonomous Vehicles (AVs) and the maturity of Vehicle-to-Everything (V2X) communication has enabled the capability of cooperative connected and automated vehicles (CAVs). Building on top of cooperative perception, this paper explores the feasibility and effectiveness of cooperative motion prediction. Our method, CMP, takes LiDAR signals as input to enhance tracking and prediction capabilities. Unlike previous work that focuses separately on either cooperative perception or motion prediction, our framework, to the best of our knowledge, is the first to address the unified problem where CAVs share information in both perception and prediction modules. Incorporated into our design is the unique capability to tolerate realistic V2X bandwidth limitations and transmission delays, while dealing with bulky perception representations. We also propose a prediction aggregation module, which unifies the predictions obtained by different CAVs and generates the final prediction. Through extensive experiments and ablation studies, we demonstrate the effectiveness of our method in cooperative perception, tracking, and motion prediction tasks. In particular, CMP reduces the average prediction error by 17.2\% with fewer missing detections compared with the no cooperation setting. Our work marks a significant step forward in the cooperative capabilities of CAVs, showcasing enhanced performance in complex scenarios.


Towards the Unification of Generative and Discriminative Visual Foundation Model: A Survey

arXiv.org Artificial Intelligence

The advent of foundation models, which are pre-trained on vast datasets, has ushered in a new era of computer vision, characterized by their robustness and remarkable zero-shot generalization capabilities. Mirroring the transformative impact of foundation models like large language models (LLMs) in natural language processing, visual foundation models (VFMs) have become a catalyst for groundbreaking developments in computer vision. This review paper delineates the pivotal trajectories of VFMs, emphasizing their scalability and proficiency in generative tasks such as text-to-image synthesis, as well as their adeptness in discriminative tasks including image segmentation. While generative and discriminative models have historically charted distinct paths, we undertake a comprehensive examination of the recent strides made by VFMs in both domains, elucidating their origins, seminal breakthroughs, and pivotal methodologies. Additionally, we collate and discuss the extensive resources that facilitate the development of VFMs and address the challenges that pave the way for future research endeavors. A crucial direction for forthcoming innovation is the amalgamation of generative and discriminative paradigms. The nascent application of generative models within discriminative contexts signifies the early stages of this confluence. This survey aspires to be a contemporary compendium for scholars and practitioners alike, charting the course of VFMs and illuminating their multifaceted landscape.


EqDrive: Efficient Equivariant Motion Forecasting with Multi-Modality for Autonomous Driving

arXiv.org Artificial Intelligence

Forecasting vehicular motions in autonomous driving requires a deep understanding of agent interactions and the preservation of motion equivariance under Euclidean geometric transformations. Traditional models often lack the sophistication needed to handle the intricate dynamics inherent to autonomous vehicles and the interaction relationships among agents in the scene. As a result, these models have a lower model capacity, which then leads to higher prediction errors and lower training efficiency. In our research, we employ EqMotion, a leading equivariant particle, and human prediction model that also accounts for invariant agent interactions, for the task of multi-agent vehicle motion forecasting. In addition, we use a multi-modal prediction mechanism to account for multiple possible future paths in a probabilistic manner. By leveraging EqMotion, our model achieves state-of-the-art (SOTA) performance with fewer parameters (1.2 million) and a significantly reduced training time (less than 2 hours).