Wang, Xuan
MSNGO: multi-species protein function annotation based on 3D protein structure and network propagation
Wang, Beibei, Cui, Boyue, Chen, Shiqu, Wang, Xuan, Wang, Yadong, Li, Junyi
Motivation: In recent years, protein function prediction has broken through the bottleneck of sequence features, significantly improving prediction accuracy using high-precision protein structures predicted by AlphaFold2. While single-species protein function prediction methods have achieved remarkable success, multi-species protein function prediction methods are still in the stage of using PPI networks and sequence features. Providing effective cross-species label propagation for species with sparse protein annotations remains a challenging issue. To address this problem, we propose the MSNGO model, which integrates structural features and network propagation methods. Our validation shows that using structural features can significantly improve the accuracy of multi-species protein function prediction. Results: We employ graph representation learning techniques to extract amino acid representations from protein structure contact maps and train a structural model using a graph convolution pooling module to derive protein-level structural features. After incorporating the sequence features from ESM-2, we apply a network propagation algorithm to aggregate information and update node representations within a heterogeneous network. The results demonstrate that MSNGO outperforms previous multi-species protein function prediction methods that rely on sequence features and PPI networks. Availability: https://github.com/blingbell/MSNGO.
Lie Detector: Unified Backdoor Detection via Cross-Examination Framework
Wang, Xuan, Liang, Siyuan, Liao, Dongping, Fang, Han, Liu, Aishan, Cao, Xiaochun, Lu, Yu-liang, Chang, Ee-Chien, Gao, Xitong
Institutions with limited data and computing resources often outsource model training to third-party providers in a semi-honest setting, assuming adherence to prescribed training protocols with pre-defined learning paradigm (e.g., supervised or semi-supervised learning). However, this practice can introduce severe security risks, as adversaries may poison the training data to embed backdoors into the resulting model. Existing detection approaches predominantly rely on statistical analyses, which often fail to maintain universally accurate detection accuracy across different learning paradigms. To address this challenge, we propose a unified backdoor detection framework in the semi-honest setting that exploits cross-examination of model inconsistencies between two independent service providers. Specifically, we integrate central kernel alignment to enable robust feature similarity measurements across different model architectures and learning paradigms, thereby facilitating precise recovery and identification of backdoor triggers. We further introduce backdoor fine-tuning sensitivity analysis to distinguish backdoor triggers from adversarial perturbations, substantially reducing false positives. Extensive experiments demonstrate that our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines across supervised, semi-supervised, and autoregressive learning tasks, respectively. Notably, it is the first to effectively detect backdoors in multimodal large language models, further highlighting its broad applicability and advancing secure deep learning.
Mutual Adaptation in Human-Robot Co-Transportation with Human Preference Uncertainty
Mahmud, Al Jaber, Li, Weizi, Wang, Xuan
Mutual adaptation can significantly enhance overall task performance in human-robot co-transportation by integrating both the robot's and human's understanding of the environment. While human modeling helps capture humans' subjective preferences, two challenges persist: (i) the uncertainty of human preference parameters and (ii) the need to balance adaptation strategies that benefit both humans and robots. In this paper, we propose a unified framework to address these challenges and improve task performance through mutual adaptation. First, instead of relying on fixed parameters, we model a probability distribution of human choices by incorporating a range of uncertain human parameters. Next, we introduce a time-varying stubbornness measure and a coordination mode transition model, which allows either the robot to lead the team's trajectory or, if a human's preferred path conflicts with the robot's plan and their stubbornness exceeds a threshold, the robot to transition to following the human. Finally, we introduce a pose optimization strategy to mitigate the uncertain human behaviors when they are leading. To validate the framework, we design and perform experiments with real human feedback. We then demonstrate, through simulations, the effectiveness of our models in enhancing task performance with mutual adaptation and pose optimization.
Merge then Realign: Simple and Effective Modality-Incremental Continual Learning for Multimodal LLMs
Zhang, Dingkun, Qi, Shuhan, Xiao, Xinyu, Chen, Kehai, Wang, Xuan
Recent advances in Multimodal Large Language Models (MLLMs) have enhanced their versatility as they integrate a growing number of modalities. Considering the heavy cost of training MLLMs, it is necessary to reuse the existing ones and further extend them to more modalities through Modality-incremental Continual Learning (MCL). However, this often comes with a performance degradation in the previously learned modalities. In this work, we revisit the MCL and investigate a more severe issue it faces in contrast to traditional continual learning, that its degradation comes not only from catastrophic forgetting but also from the misalignment between the modality-agnostic and modality-specific components. To address this problem, we propose an elegantly simple MCL paradigm called "MErge then ReAlign" (MERA). Our method avoids introducing heavy training overhead or modifying the model architecture, hence is easy to deploy and highly reusable in the MLLM community. Extensive experiments demonstrate that, despite the simplicity of MERA, it shows impressive performance, holding up to a 99.84% Backward Relative Gain when extending to four modalities, achieving a nearly lossless MCL performance.
AI-Powered Episodic Future Thinking
Ahmadi, Sareh, Rockwell, Michelle, Stuart, Megan, Tegge, Allison, Wang, Xuan, Stein, Jeffrey, Fox, Edward A.
Episodic Future Thinking (EFT) is an intervention that involves vividly imagining personal future events and experiences in detail. It has shown promise as an intervention to reduce delay discounting - the tendency to devalue delayed rewards in favor of immediate gratification - and to promote behavior change in a range of maladaptive health behaviors. We present EFTeacher, an AI chatbot powered by the GPT-4-Turbo large language model, designed to generate EFT cues for users with lifestyle-related conditions. To evaluate the chatbot, we conducted a user study that included usability assessments and user evaluations based on content characteristics questionnaires, followed by semi-structured interviews. The study provides qualitative insights into participants' experiences and interactions with the chatbot and its usability. Our findings highlight the potential application of AI chatbots based on Large Language Models (LLMs) in EFT interventions, and offer design guidelines for future behavior-oriented applications.
A Comprehensive Survey on the Trustworthiness of Large Language Models in Healthcare
Aljohani, Manar, Hou, Jun, Kommu, Sindhura, Wang, Xuan
The application of large language models (LLMs) in healthcare has the potential to revolutionize clinical decision-making, medical research, and patient care. As LLMs are increasingly integrated into healthcare systems, several critical challenges must be addressed to ensure their reliable and ethical deployment. These challenges include truthfulness, where models generate misleading information; privacy, with risks of unintentional data retention; robustness, requiring defenses against adversarial attacks; fairness, addressing biases in clinical outcomes; explainability, ensuring transparent decision-making; and safety, mitigating risks of misinformation and medical errors. Recently, researchers have begun developing benchmarks and evaluation frameworks to systematically assess the trustworthiness of LLMs. However, the trustworthiness of LLMs in healthcare remains underexplored, lacking a systematic review that provides a comprehensive understanding and future insights into this area. This survey bridges this gap by providing a comprehensive overview of the recent research of existing methodologies and solutions aimed at mitigating the above risks in healthcare. By focusing on key trustworthiness dimensions including truthfulness, privacy and safety, robustness, fairness and bias, and explainability, we present a thorough analysis of how these issues impact the reliability and ethical use of LLMs in healthcare. This paper highlights ongoing efforts and offers insights into future research directions to ensure the safe and trustworthy deployment of LLMs in healthcare.
Towards Reasoning Ability of Small Language Models
Srivastava, Gaurav, Cao, Shuxiang, Wang, Xuan
Reasoning has long been viewed as an emergent property of large language models (LLMs), appearing at or above a certain scale ($\sim$100B parameters). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. SLMs are increasingly favored for their efficiency and deployability. However, there is a lack of systematic study on the reasoning abilities of diverse SLMs, including those trained from scratch or derived from LLMs through quantization, pruning, and distillation. This raises a critical question: Can SLMs achieve reasoning abilities comparable to LLMs? In this work, we systematically survey, benchmark, and analyze 72 SLMs from six model families across 14 reasoning benchmarks. For reliable evaluation, we examine four evaluation methods and compare four LLM judges against human evaluations on 800 data points. We repeat all experiments three times to ensure a robust performance assessment. Additionally, we analyze the impact of different prompting strategies in small models. Beyond accuracy, we also evaluate model robustness under adversarial conditions and intermediate reasoning steps. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. They can serve as efficient alternatives to LLMs for reasoning-intensive tasks.
Joint Pricing and Resource Allocation: An Optimal Online-Learning Approach
Xu, Jianyu, Wang, Xuan, Wang, Yu-Xiang, Jiang, Jiashuo
The problem of dynamic pricing examines strategies of setting and adjusting prices in response to varying customer behaviors and market conditions. The mainstream of existing works on dynamic pricing, including Kleinberg and Leighton (2003); Broder and Rusmevichientong (2012); Cohen et al. (2020); Wang et al. (2021b), focuses on the estimation of demand curves while putting aside the decisions on the supply side. Another series of literature, including Besbes and Zeevi (2009); Chen et al. (2019, 2021a); Keskin et al. (2022), takes supply and inventories into account. However, these works simplify the supply cost as uniform and static, underestimating the difficulty of allocating products through sophisticated supply chains among multiple parties such as factories, warehouses, and retailers. On the other hand, the problem of resource allocation - to serve different demand classes with various types of resources - presents a complex challenge within the field of operations research. Analogous to online dynamic pricing, the recent proliferation of e-platforms has magnified the importance of developing online allocation algorithms that efficiently manage supply and demand on the fly while maximizing cumulative utilities.
LiveIdeaBench: Evaluating LLMs' Scientific Creativity and Idea Generation with Minimal Context
Ruan, Kai, Wang, Xuan, Hong, Jixiang, Wang, Peng, Liu, Yang, Sun, Hao
While Large Language Models (LLMs) have demonstrated remarkable capabilities in scientific tasks, existing evaluation frameworks primarily assess their performance using rich contextual inputs, overlooking their ability to generate novel ideas from minimal information. We introduce LiveIdeaBench, a comprehensive benchmark that evaluates LLMs' scientific creativity and divergent thinking capabilities using single-keyword prompts. Drawing from Guilford's creativity theory, our framework employs a dynamic panel of state-of-the-art LLMs to assess generated ideas across four key dimensions: originality, feasibility, fluency, and flexibility. Through extensive experimentation with 20 leading models across 1,180 keywords spanning 18 scientific domains, we reveal that scientific creative ability shows distinct patterns from general intelligence metrics. Notably, our results demonstrate that models like QwQ-32B-preview achieve comparable creative performance to top-tier models like o1-preview, despite significant gaps in their general intelligence scores. These findings highlight the importance of specialized evaluation frameworks for scientific creativity and suggest that the development of creative capabilities in LLMs may follow different trajectories than traditional problem-solving abilities.
Generating Unseen Nonlinear Evolution in Sea Surface Temperature Using a Deep Learning-Based Latent Space Data Assimilation Framework
Zheng, Qingyu, Han, Guijun, Li, Wei, Cao, Lige, Zhou, Gongfu, Wu, Haowen, Shao, Qi, Wang, Ru, Wu, Xiaobo, Cui, Xudong, Li, Hong, Wang, Xuan
Advances in data assimilation (DA) methods have greatly improved the accuracy of Earth system predictions. To fuse multi-source data and reconstruct the nonlinear evolution missing from observations, geoscientists are developing future-oriented DA methods. In this paper, we redesign a purely data-driven latent space DA framework (DeepDA) that employs a generative artificial intelligence model to capture the nonlinear evolution in sea surface temperature. Under variational constraints, DeepDA embedded with nonlinear features can effectively fuse heterogeneous data. The results show that DeepDA remains highly stable in capturing and generating nonlinear evolutions even when a large amount of observational information is missing. It can be found that when only 10% of the observation information is available, the error increase of DeepDA does not exceed 40%. Furthermore, DeepDA has been shown to be robust in the fusion of real observations and ensemble simulations. In particular, this paper provides a mechanism analysis of the nonlinear evolution generated by DeepDA from the perspective of physical patterns, which reveals the inherent explainability of our DL model in capturing multi-scale ocean signals.