Goto

Collaborating Authors

 Wang, Xihuai


PMAT: Optimizing Action Generation Order in Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Multi-agent reinforcement learning (MARL) faces challenges in coordinating agents due to complex interdependencies within multi-agent systems. Most MARL algorithms use the simultaneous decision-making paradigm but ignore the action-level dependencies among agents, which reduces coordination efficiency. In contrast, the sequential decision-making paradigm provides finer-grained supervision for agent decision order, presenting the potential for handling dependencies via better decision order management. However, determining the optimal decision order remains a challenge. In this paper, we introduce Action Generation with Plackett-Luce Sampling (AGPS), a novel mechanism for agent decision order optimization. We model the order determination task as a Plackett-Luce sampling process to address issues such as ranking instability and vanishing gradient during the network training process. AGPS realizes credit-based decision order determination by establishing a bridge between the significance of agents' local observations and their decision credits, thus facilitating order optimization and dependency management. Integrating AGPS with the Multi-Agent Transformer, we propose the Prioritized Multi-Agent Transformer (PMAT), a sequential decision-making MARL algorithm with decision order optimization. Experiments on benchmarks including StarCraft II Multi-Agent Challenge, Google Research Football, and Multi-Agent MuJoCo show that PMAT outperforms state-of-the-art algorithms, greatly enhancing coordination efficiency.


Leveraging Dual Process Theory in Language Agent Framework for Real-time Simultaneous Human-AI Collaboration

arXiv.org Artificial Intelligence

Agents built on large language models (LLMs) have excelled in turn-by-turn human-AI collaboration but struggle with simultaneous tasks requiring real-time interaction. Latency issues and the challenge of inferring variable human strategies hinder their ability to make autonomous decisions without explicit instructions. Through experiments with current independent System 1 and System 2 methods, we validate the necessity of using Dual Process Theory (DPT) in real-time tasks. We propose DPT-Agent, a novel language agent framework that integrates System 1 and System 2 for efficient real-time simultaneous human-AI collaboration. DPT-Agent's System 1 uses a Finite-state Machine (FSM) and code-as-policy for fast, intuitive, and controllable decision-making. DPT-Agent's System 2 integrates Theory of Mind (ToM) and asynchronous reflection to infer human intentions and perform reasoning-based autonomous decisions. We demonstrate the effectiveness of DPT-Agent through further experiments with rule-based agents and human collaborators, showing significant improvements over mainstream LLM-based frameworks. To the best of our knowledge, DPT-Agent is the first language agent framework that achieves successful real-time simultaneous human-AI collaboration autonomously. Code of DPT-Agent can be found in https://github.com/sjtu-marl/DPT-Agent.


HammerBench: Fine-Grained Function-Calling Evaluation in Real Mobile Device Scenarios

arXiv.org Artificial Intelligence

Evaluating the capabilities of large language models (LLMs) in human-LLM interactions remains challenging due to the inherent complexity and openness of dialogue processes. This paper introduces HammerBench, a novel benchmarking framework designed to assess the function-calling ability of LLMs more effectively in such interactions. We model a wide range of real-world user scenarios on mobile devices, encompassing imperfect instructions, diverse question-answer trajectories, intent/argument shifts, and the use of external individual information through pronouns. To construct the corresponding datasets, we propose a comprehensive pipeline that involves LLM-generated data and multiple rounds of human validation, ensuring high data quality. Additionally, we decompose the conversations into function-calling snapshots, enabling a fine-grained evaluation of each turn. We evaluate several popular LLMs using HammerBench and highlight different performance aspects. Our empirical findings reveal that errors in parameter naming constitute the primary factor behind conversation failures across different data types.


Computing Ex Ante Equilibrium in Heterogeneous Zero-Sum Team Games

arXiv.org Artificial Intelligence

The ex ante equilibrium for two-team zero-sum games, where agents within each team collaborate to compete against the opposing team, is known to be the best a team can do for coordination. Many existing works on ex ante equilibrium solutions are aiming to extend the scope of ex ante equilibrium solving to large-scale team games based on Policy Space Response Oracle (PSRO). However, the joint team policy space constructed by the most prominent method, Team PSRO, cannot cover the entire team policy space in heterogeneous team games where teammates play distinct roles. Such insufficient policy expressiveness causes Team PSRO to be trapped into a sub-optimal ex ante equilibrium with significantly higher exploitability and never converges to the global ex ante equilibrium. To find the global ex ante equilibrium without introducing additional computational complexity, we first parameterize heterogeneous policies for teammates, and we prove that optimizing the heterogeneous teammates' policies sequentially can guarantee a monotonic improvement in team rewards. We further propose Heterogeneous-PSRO (H-PSRO), a novel framework for heterogeneous team games, which integrates the sequential correlation mechanism into the PSRO framework and serves as the first PSRO framework for heterogeneous team games. We prove that H-PSRO achieves lower exploitability than Team PSRO in heterogeneous team games. Empirically, H-PSRO achieves convergence in matrix heterogeneous games that are unsolvable by non-heterogeneous baselines. Further experiments reveal that H-PSRO outperforms non-heterogeneous baselines in both heterogeneous team games and homogeneous settings.


Quantifying Zero-shot Coordination Capability with Behavior Preferring Partners

arXiv.org Artificial Intelligence

Zero-shot coordination (ZSC) is a new challenge focusing on generalizing learned coordination skills to unseen partners. Existing methods train the ego agent with partners from pre-trained or evolving populations. The agent's ZSC capability is typically evaluated with a few evaluation partners, including humans and agents, and reported by mean returns. Current evaluation methods for ZSC capability still need improvement in constructing diverse evaluation partners and comprehensively measuring ZSC capability. In this paper, we aim to create a reliable, comprehensive, and efficient evaluation method for ZSC capability. We formally define the ideal'diversity-complete' evaluation partners and propose the best response (BR) diversity, which is the population diversity of the BRs to the partners, to approximate the ideal evaluation partners. We propose an evaluation workflow including'diversity-complete' evaluation partners construction and a multidimensional metric, the Best Response Proximity (BR-Prox) metric. We re-evaluate strong ZSC methods in the Overcooked environment using the proposed evaluation workflow. Surprisingly, the results in some of the most used layouts fail to distinguish the performance of different ZSC methods. Moreover, the evaluated ZSC methods lack the ability to produce enough diverse and high-performing training partners. Our proposed evaluation workflow calls for a change in how we efficiently evaluate ZSC methods as a supplement to human evaluation. Zero-shot Coordination (ZSC) is a new challenge in training an agent named ego agent to have the capability to coordinate with unseen partners in cooperative AI (Hu et al., 2020).


Order Matters: Agent-by-agent Policy Optimization

arXiv.org Artificial Intelligence

While multi-agent trust region algorithms have achieved great success empirically in solving coordination tasks, most of them, however, suffer from a non-stationarity problem since agents update their policies simultaneously. In contrast, a sequential scheme that updates policies agent-by-agent provides another perspective and shows strong performance. However, sample inefficiency and lack of monotonic improvement guarantees for each agent are still the two significant challenges for the sequential scheme. In this paper, we propose the \textbf{A}gent-by-\textbf{a}gent \textbf{P}olicy \textbf{O}ptimization (A2PO) algorithm to improve the sample efficiency and retain the guarantees of monotonic improvement for each agent during training. We justify the tightness of the monotonic improvement bound compared with other trust region algorithms. From the perspective of sequentially updating agents, we further consider the effect of agent updating order and extend the theory of non-stationarity into the sequential update scheme. To evaluate A2PO, we conduct a comprehensive empirical study on four benchmarks: StarCraftII, Multi-agent MuJoCo, Multi-agent Particle Environment, and Google Research Football full game scenarios. A2PO consistently outperforms strong baselines.


Model-based Multi-agent Reinforcement Learning: Recent Progress and Prospects

arXiv.org Artificial Intelligence

Significant advances have recently been achieved in Multi-Agent Reinforcement Learning (MARL) which tackles sequential decision-making problems involving multiple participants. However, MARL requires a tremendous number of samples for effective training. On the other hand, model-based methods have been shown to achieve provable advantages of sample efficiency. However, the attempts of model-based methods to MARL have just started very recently. This paper presents a review of the existing research on model-based MARL, including theoretical analyses, algorithms, and applications, and analyzes the advantages and potential of model-based MARL. Specifically, we provide a detailed taxonomy of the algorithms and point out the pros and cons for each algorithm according to the challenges inherent to multi-agent scenarios. We also outline promising directions for future development of this field.


Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise Rollouts

arXiv.org Artificial Intelligence

This paper investigates the model-based methods in multi-agent reinforcement learning (MARL). We specify the dynamics sample complexity and the opponent sample complexity in MARL, and conduct a theoretic analysis of return discrepancy upper bound. To reduce the upper bound with the intention of low sample complexity during the whole learning process, we propose a novel decentralized model-based MARL method, named Adaptive Opponent-wise Rollout Policy Optimization (AORPO). In AORPO, each agent builds its multi-agent environment model, consisting of a dynamics model and multiple opponent models, and trains its policy with the adaptive opponent-wise rollout. We further prove the theoretic convergence of AORPO under reasonable assumptions. Empirical experiments on competitive and cooperative tasks demonstrate that AORPO can achieve improved sample efficiency with comparable asymptotic performance over the compared MARL methods.