Wang, Lucy Lu
FACTS&EVIDENCE: An Interactive Tool for Transparent Fine-Grained Factual Verification of Machine-Generated Text
Boonsanong, Varich, Balachandran, Vidhisha, Han, Xiaochuang, Feng, Shangbin, Wang, Lucy Lu, Tsvetkov, Yulia
With the widespread consumption of AI-generated content, there has been an increased focus on developing automated tools to verify the factual accuracy of such content. However, prior research and tools developed for fact verification treat it as a binary classification or a linear regression problem. Although this is a useful mechanism as part of automatic guardrails in systems, we argue that such tools lack transparency in the prediction reasoning and diversity in source evidence to provide a trustworthy user experience. We develop Facts&Evidence - an interactive and transparent tool for user-driven verification of complex text. The tool facilitates the intricate decision-making involved in fact-verification, presenting its users a breakdown of complex input texts to visualize the credibility of individual claims along with an explanation of model decisions and attribution to multiple, diverse evidence sources. Facts&Evidence aims to empower consumers of machine-generated text and give them agency to understand, verify, selectively trust and use such text.
Explainable AI for Clinical Outcome Prediction: A Survey of Clinician Perceptions and Preferences
Hou, Jun, Wang, Lucy Lu
Explainable AI for Clinical Outcome Prediction: A Survey of Clinician Perceptions and Preferences Jun Hou, MS 1, Lucy Lu Wang, PhD 2 1 Virginia T ech, Blacksburg, V A; 2 University of Washington, Seattle, W A Abstract Explainable AI (XAI) techniques are necessary to help clinicians make sense of AI predictions and integrate predictions into their decision-making workflow. In this work, we conduct a survey study to understand clinician preference among different XAI techniques when they are used to interpret model predictions over text-based EHR data. We implement four XAI techniques (LIME, Attention-based span highlights, exemplar patient retrieval, and free-text rationales generated by LLMs) on an outcome prediction model that uses ICU admission notes to predict a patient's likelihood of experiencing in-hospital mortality. Using these XAI implementations, we design and conduct a survey study of 32 practicing clinicians, collecting their feedback and preferences on the four techniques. We synthesize our findings into a set of recommendations describing when each of the XAI techniques may be more appropriate, their potential limitations, as well as recommendations for improvement. I NTRODUCTION Clinical decision support systems (CDSS) powered by machine learning and AI have the potential to assist in medical decisions and improve patient outcomes. However, to meaningfully support clinicians, AI-powered CDSS must be trustworthy and interpretable, allowing clinicians to assess the utility and applicability of model predictions. Explainable AI (XAI) techniques have been proposed to improve model interpretability, especially for neural network and other blackbox models. 1 While XAI techniques have been applied to CDSS, 2 a comprehensive understanding of clinician preferences and perceptions regarding XAI applications in these systems remains largely unexplored. Prior work on clinical XAI tends to focus on explanatory accuracy, in terms of which models are applicable, 3 how to integrate XAI methods for different healthcare tasks, 4 or which datasets are available to train on.
Varying Shades of Wrong: Aligning LLMs with Wrong Answers Only
Yao, Jihan, Ding, Wenxuan, Feng, Shangbin, Wang, Lucy Lu, Tsvetkov, Yulia
In the absence of abundant reliable annotations for challenging tasks and contexts, how can we expand the frontier of LLM capabilities with potentially wrong answers? We focus on two research questions: (1) Can LLMs generate reliable preferences among wrong options? And if so, (2) Would alignment with such wrong-over-wrong preferences be helpful? We employ methods based on self-consistency, token probabilities, and LLM-as-a-judge to elicit wrong-over-wrong preferences, and fine-tune language models with preference optimization approaches using these synthesized preferences. Extensive experiments with seven LLMs and eight datasets demonstrate that (1) LLMs do have preliminary capability in distinguishing various shades of wrong, achieving up to 20.9% higher performance than random guess; (2) Alignment with wrong-over-wrong preferences helps LLMs to produce less wrong and sometimes even outright correct answers, while overall improving model calibration.
TOPICAL: TOPIC Pages AutomagicaLly
Giorgi, John, Singh, Amanpreet, Downey, Doug, Feldman, Sergey, Wang, Lucy Lu
Topic pages aggregate useful information about an entity or concept into a single succinct and accessible article. Automated creation of topic pages would enable their rapid curation as information resources, providing an alternative to traditional web search. While most prior work has focused on generating topic pages about biographical entities, in this work, we develop a completely automated process to generate high-quality topic pages for scientific entities, with a focus on biomedical concepts. We release TOPICAL, a web app and associated open-source code, comprising a model pipeline combining retrieval, clustering, and prompting, that makes it easy for anyone to generate topic pages for a wide variety of biomedical entities on demand. In a human evaluation of 150 diverse topic pages generated using TOPICAL, we find that the vast majority were considered relevant, accurate, and coherent, with correct supporting citations. We make all code publicly available and host a free-to-use web app at: https://s2-topical.apps.allenai.org
Characterizing LLM Abstention Behavior in Science QA with Context Perturbations
Wen, Bingbing, Howe, Bill, Wang, Lucy Lu
The correct model response in the face of uncertainty is to abstain from answering a question so as not to mislead the user. In this work, we study the ability of LLMs to abstain from answering context-dependent science questions when provided insufficient or incorrect context. We probe model sensitivity in several settings: removing gold context, replacing gold context with irrelevant context, and providing additional context beyond what is given. In experiments on four QA datasets with four LLMs, we show that performance varies greatly across models, across the type of context provided, and also by question type; in particular, many LLMs seem unable to abstain from answering boolean questions using standard QA prompts. Our analysis also highlights the unexpected impact of abstention performance on QA task accuracy. Counter-intuitively, in some settings, replacing gold context with irrelevant context or adding irrelevant context to gold context can improve abstention performance in a way that results in improvements in task performance. Our results imply that changes are needed in QA dataset design and evaluation to more effectively assess the correctness and downstream impacts of model abstention.
From Paper to Card: Transforming Design Implications with Generative AI
Shin, Donghoon, Wang, Lucy Lu, Hsieh, Gary
Communicating design implications is common within the HCI community when publishing academic papers, yet these papers are rarely read and used by designers. One solution is to use design cards as a form of translational resource that communicates valuable insights from papers in a more digestible and accessible format to assist in design processes. However, creating design cards can be time-consuming, and authors may lack the resources/know-how to produce cards. Through an iterative design process, we built a system that helps create design cards from academic papers using an LLM and text-to-image model. Our evaluation with designers (N=21) and authors of selected papers (N=12) revealed that designers perceived the design implications from our design cards as more inspiring and generative, compared to reading original paper texts, and the authors viewed our system as an effective way of communicating their design implications. We also propose future enhancements for AI-generated design cards.
NLP for Maternal Healthcare: Perspectives and Guiding Principles in the Age of LLMs
Antoniak, Maria, Naik, Aakanksha, Alvarado, Carla S., Wang, Lucy Lu, Chen, Irene Y.
Ethical frameworks for the use of natural language processing (NLP) are urgently needed to shape how large language models (LLMs) and similar tools are used for healthcare applications. Healthcare faces existing challenges including the balance of power in clinician-patient relationships, systemic health disparities, historical injustices, and economic constraints. Drawing directly from the voices of those most affected, and focusing on a case study of a specific healthcare setting, we propose a set of guiding principles for the use of NLP in maternal healthcare. We led an interactive session centered on an LLM-based chatbot demonstration during a full-day workshop with 39 participants, and additionally surveyed 30 healthcare workers and 30 birthing people about their values, needs, and perceptions of NLP tools in the context of maternal health. We conducted quantitative and qualitative analyses of the survey results and interactive discussions to consolidate our findings into a set of guiding principles. We propose nine principles for ethical use of NLP for maternal healthcare, grouped into three themes: (i) recognizing contextual significance (ii) holistic measurements, and (iii) who/what is valued. For each principle, we describe its underlying rationale and provide practical advice. This set of principles can provide a methodological pattern for other researchers and serve as a resource to practitioners working on maternal health and other healthcare fields to emphasize the importance of technical nuance, historical context, and inclusive design when developing NLP technologies for clinical use.
Personalized Jargon Identification for Enhanced Interdisciplinary Communication
Guo, Yue, Chang, Joseph Chee, Antoniak, Maria, Bransom, Erin, Cohen, Trevor, Wang, Lucy Lu, August, Tal
Scientific jargon can impede researchers when they read materials from other domains. Current methods of jargon identification mainly use corpus-level familiarity indicators (e.g., Simple Wikipedia represents plain language). However, researchers' familiarity of a term can vary greatly based on their own background. We collect a dataset of over 10K term familiarity annotations from 11 computer science researchers for terms drawn from 100 paper abstracts. Analysis of this data reveals that jargon familiarity and information needs vary widely across annotators, even within the same sub-domain (e.g., NLP). We investigate features representing individual, sub-domain, and domain knowledge to predict individual jargon familiarity. We compare supervised and prompt-based approaches, finding that prompt-based methods including personal publications yields the highest accuracy, though zero-shot prompting provides a strong baseline. This research offers insight into features and methods to integrate personal data into scientific jargon identification.
The Rise of Open Science: Tracking the Evolution and Perceived Value of Data and Methods Link-Sharing Practices
Cao, Hancheng, Dodge, Jesse, Lo, Kyle, McFarland, Daniel A., Wang, Lucy Lu
In recent years, funding agencies and journals increasingly advocate for open science practices (e.g. data and method sharing) to improve the transparency, access, and reproducibility of science. However, quantifying these practices at scale has proven difficult. In this work, we leverage a large-scale dataset of 1.1M papers from arXiv that are representative of the fields of physics, math, and computer science to analyze the adoption of data and method link-sharing practices over time and their impact on article reception. To identify links to data and methods, we train a neural text classification model to automatically classify URL types based on contextual mentions in papers. We find evidence that the practice of link-sharing to methods and data is spreading as more papers include such URLs over time. Reproducibility efforts may also be spreading because the same links are being increasingly reused across papers (especially in computer science); and these links are increasingly concentrated within fewer web domains (e.g. Github) over time. Lastly, articles that share data and method links receive increased recognition in terms of citation count, with a stronger effect when the shared links are active (rather than defunct). Together, these findings demonstrate the increased spread and perceived value of data and method sharing practices in open science.
Automated Metrics for Medical Multi-Document Summarization Disagree with Human Evaluations
Wang, Lucy Lu, Otmakhova, Yulia, DeYoung, Jay, Truong, Thinh Hung, Kuehl, Bailey E., Bransom, Erin, Wallace, Byron C.
Evaluating multi-document summarization (MDS) quality is difficult. This is especially true in the case of MDS for biomedical literature reviews, where models must synthesize contradicting evidence reported across different documents. Prior work has shown that rather than performing the task, models may exploit shortcuts that are difficult to detect using standard n-gram similarity metrics such as ROUGE. Better automated evaluation metrics are needed, but few resources exist to assess metrics when they are proposed. Therefore, we introduce a dataset of human-assessed summary quality facets and pairwise preferences to encourage and support the development of better automated evaluation methods for literature review MDS. We take advantage of community submissions to the Multi-document Summarization for Literature Review (MSLR) shared task to compile a diverse and representative sample of generated summaries. We analyze how automated summarization evaluation metrics correlate with lexical features of generated summaries, to other automated metrics including several we propose in this work, and to aspects of human-assessed summary quality. We find that not only do automated metrics fail to capture aspects of quality as assessed by humans, in many cases the system rankings produced by these metrics are anti-correlated with rankings according to human annotators.