Wang, Lirui
Learning Real-World Action-Video Dynamics with Heterogeneous Masked Autoregression
Wang, Lirui, Zhao, Kevin, Liu, Chaoqi, Chen, Xinlei
We propose Heterogeneous Masked Autoregression (HMA) for modeling action-video dynamics to generate high-quality data and evaluation in scaling robot learning. Building interactive video world models and policies for robotics is difficult due to the challenge of handling diverse settings while maintaining computational efficiency to run in real time. HMA uses heterogeneous pre-training from observations and action sequences across different robotic embodiments, domains, and tasks. HMA uses masked autoregression to generate quantized or soft tokens for video predictions. \ourshort achieves better visual fidelity and controllability than the previous robotic video generation models with 15 times faster speed in the real world. After post-training, this model can be used as a video simulator from low-level action inputs for evaluating policies and generating synthetic data. See this link https://liruiw.github.io/hma for more information.
Inference-Time Policy Steering through Human Interactions
Wang, Yanwei, Wang, Lirui, Du, Yilun, Sundaralingam, Balakumar, Yang, Xuning, Chao, Yu-Wei, Perez-D'Arpino, Claudia, Fox, Dieter, Shah, Julie
Generative policies trained with human demonstrations can autonomously accomplish multimodal, long-horizon tasks. However, during inference, humans are often removed from the policy execution loop, limiting the ability to guide a pre-trained policy towards a specific sub-goal or trajectory shape among multiple predictions. Naive human intervention may inadvertently exacerbate distribution shift, leading to constraint violations or execution failures. To better align policy output with human intent without inducing out-of-distribution errors, we propose an Inference-Time Policy Steering (ITPS) framework that leverages human interactions to bias the generative sampling process, rather than fine-tuning the policy on interaction data. We evaluate ITPS across three simulated and real-world benchmarks, testing three forms of human interaction and associated alignment distance metrics. Among six sampling strategies, our proposed stochastic sampling with diffusion policy achieves the best trade-off between alignment and distribution shift. Videos are available at https://yanweiw.github.io/itps/.
GenSim2: Scaling Robot Data Generation with Multi-modal and Reasoning LLMs
Hua, Pu, Liu, Minghuan, Macaluso, Annabella, Lin, Yunfeng, Zhang, Weinan, Xu, Huazhe, Wang, Lirui
Robot learning requires large amounts of interaction data and evaluation, which are expensive to acquire at scale in the real world. Robot simulation holds the promise of providing such data and verification in high diversity and efficiency across objects, tasks, and scenes. While the ability to simulate has led to many successes in AI across Gaming, Go, and Mathematical Proofs [2, 3, 4], there are two requirements for such a path to be successful in robotics: The data needs to scale in complexity without significant human efforts and the data needs to be realistic enough to transfer to the real world. Previous works [5, 6, 7, 8, 9, 10, 11] have made significant progress in scalable simulation benchmarks in robotics and training policies on the simulation data. Foundation models [12], particularly generative models pre-trained on internet-scale data [13, 14, 15], have demonstrated impressive capabilities required for generating robot simulation tasks, such as coding [16], spatial reasoning [17], task semantics [9], planning [18, 19], video prediction[20, 21], and cost and reward understanding [22, 23]. While foundation models have shown impressive capabilities to output actions to solve robotic tasks directly in the real world [24], simulation provides a low-cost and scalable platform to learn robust end-to-end policies.
Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers
Wang, Lirui, Chen, Xinlei, Zhao, Jialiang, He, Kaiming
One of the roadblocks for training generalist robotic models today is heterogeneity. Previous robot learning methods often collect data to train with one specific embodiment for one task, which is expensive and prone to overfitting. This work studies the problem of learning policy representations through heterogeneous pre-training on robot data across different embodiments and tasks at scale. We propose Heterogeneous Pre-trained Transformers (HPT), which pre-train a large, shareable trunk of a policy neural network to learn a task and embodiment agnostic shared representation. This general architecture aligns the specific proprioception and vision inputs from distinct embodiments to a short sequence of tokens and then processes such tokens to map to control robots for different tasks. Leveraging the recent large-scale multi-embodiment real-world robotic datasets as well as simulation, deployed robots, and human video datasets, we investigate pre-training policies across heterogeneity. We conduct experiments to investigate the scaling behaviors of training objectives, to the extent of 52 datasets. HPTs outperform several baselines and enhance the fine-tuned policy performance by over 20% on unseen tasks in multiple simulator benchmarks and real-world settings. See the project website (https://liruiw.github.io/hpt/) for code and videos.
Transferable Tactile Transformers for Representation Learning Across Diverse Sensors and Tasks
Zhao, Jialiang, Ma, Yuxiang, Wang, Lirui, Adelson, Edward H.
This paper presents T3: Transferable Tactile Transformers, a framework for tactile representation learning that scales across multi-sensors and multi-tasks. T3 is designed to overcome the contemporary issue that camera-based tactile sensing is extremely heterogeneous, i.e. sensors are built into different form factors, and existing datasets were collected for disparate tasks. T3 captures the shared latent information across different sensor-task pairings by constructing a shared trunk transformer with sensor-specific encoders and task-specific decoders. The pre-training of T3 utilizes a novel Foundation Tactile (FoTa) dataset, which is aggregated from several open-sourced datasets and it contains over 3 million data points gathered from 13 sensors and 11 tasks. FoTa is the largest and most diverse dataset in tactile sensing to date and it is made publicly available in a unified format. Across various sensors and tasks, experiments show that T3 pre-trained with FoTa achieved zero-shot transferability in certain sensor-task pairings, can be further fine-tuned with small amounts of domain-specific data, and its performance scales with bigger network sizes. T3 is also effective as a tactile encoder for long horizon contact-rich manipulation. Results from sub-millimeter multi-pin electronics insertion tasks show that T3 achieved a task success rate 25% higher than that of policies trained with tactile encoders trained from scratch, or 53% higher than without tactile sensing. Data, code, and model checkpoints are open-sourced at https://t3.alanz.info.
PoCo: Policy Composition from and for Heterogeneous Robot Learning
Wang, Lirui, Zhao, Jialiang, Du, Yilun, Adelson, Edward H., Tedrake, Russ
Training general robotic policies from heterogeneous data for different tasks is a significant challenge. Existing robotic datasets vary in different modalities such as color, depth, tactile, and proprioceptive information, and collected in different domains such as simulation, real robots, and human videos. Current methods usually collect and pool all data from one domain to train a single policy to handle such heterogeneity in tasks and domains, which is prohibitively expensive and difficult. In this work, we present a flexible approach, dubbed Policy Composition, to combine information across such diverse modalities and domains for learning scene-level and task-level generalized manipulation skills, by composing different data distributions represented with diffusion models. Our method can use task-level composition for multi-task manipulation and be composed with analytic cost functions to adapt policy behaviors at inference time. We train our method on simulation, human, and real robot data and evaluate in tool-use tasks. The composed policy achieves robust and dexterous performance under varying scenes and tasks and outperforms baselines from a single data source in both simulation and real-world experiments. See https://liruiw.github.io/policycomp for more details .
GenSim: Generating Robotic Simulation Tasks via Large Language Models
Wang, Lirui, Ling, Yiyang, Yuan, Zhecheng, Shridhar, Mohit, Bao, Chen, Qin, Yuzhe, Wang, Bailin, Xu, Huazhe, Wang, Xiaolong
Collecting large amounts of real-world interaction data to train general robotic policies is often prohibitively expensive, thus motivating the use of simulation data. However, existing methods for data generation have generally focused on scene-level diversity (e.g., object instances and poses) rather than task-level diversity, due to the human effort required to come up with and verify novel tasks. This has made it challenging for policies trained on simulation data to demonstrate significant task-level generalization. In this paper, we propose to automatically generate rich simulation environments and expert demonstrations by exploiting a large language models' (LLM) grounding and coding ability. Our approach, dubbed GenSim, has two modes: goal-directed generation, wherein a target task is given to the LLM and the LLM proposes a task curriculum to solve the target task, and exploratory generation, wherein the LLM bootstraps from previous tasks and iteratively proposes novel tasks that would be helpful in solving more complex tasks. We use GPT4 to expand the existing benchmark by ten times to over 100 tasks, on which we conduct supervised finetuning and evaluate several LLMs including finetuned GPTs and Code Llama on code generation for robotic simulation tasks. Furthermore, we observe that LLMs-generated simulation programs can enhance task-level generalization significantly when used for multitask policy training. We further find that with minimal sim-to-real adaptation, the multitask policies pretrained on GPT4-generated simulation tasks exhibit stronger transfer to unseen long-horizon tasks in the real world and outperform baselines by 25%. See the project website (https://liruiw.github.io/gensim) for code, demos, and videos.
Fleet Policy Learning via Weight Merging and An Application to Robotic Tool-Use
Wang, Lirui, Zhang, Kaiqing, Zhou, Allan, Simchowitz, Max, Tedrake, Russ
Fleets of robots ingest massive amounts of streaming data generated by interacting with their environments, far more than those that can be stored or transmitted with ease. At the same time, we hope that teams of robots can co-acquire diverse skills through their experiences in varied settings. How can we enable such fleet-level learning without having to transmit or centralize fleet-scale data? In this paper, we investigate distributed learning of policies as a potential solution. To efficiently merge policies in the distributed setting, we propose fleet-merge, an instantiation of distributed learning that accounts for the symmetries that can arise in learning policies that are parameterized by recurrent neural networks. We show that fleet-merge consolidates the behavior of policies trained on 50 tasks in the Meta-World environment, with the merged policy achieving good performance on nearly all training tasks at test time. Moreover, we introduce a novel robotic tool-use benchmark, fleet-tools, for fleet policy learning in compositional and contact-rich robot manipulation tasks, which might be of broader interest, and validate the efficacy of fleet-merge on the benchmark.
Does Learning from Decentralized Non-IID Unlabeled Data Benefit from Self Supervision?
Wang, Lirui, Zhang, Kaiqing, Li, Yunzhu, Tian, Yonglong, Tedrake, Russ
Decentralized learning has been advocated and widely deployed to make efficient use of distributed datasets, with an extensive focus on supervised learning (SL) problems. Unfortunately, the majority of real-world data are unlabeled and can be highly heterogeneous across sources. In this work, we carefully study decentralized learning with unlabeled data through the lens of self-supervised learning (SSL), specifically contrastive visual representation learning. We study the effectiveness of a range of contrastive learning algorithms under decentralized learning settings, on relatively large-scale datasets including ImageNet-100, MS-COCO, and a new real-world robotic warehouse dataset. Our experiments show that the decentralized SSL (Dec-SSL) approach is robust to the heterogeneity of decentralized datasets, and learns useful representation for object classification, detection, and segmentation tasks. This robustness makes it possible to significantly reduce communication and reduce the participation ratio of data sources with only minimal drops in performance. Interestingly, using the same amount of data, the representation learned by Dec-SSL can not only perform on par with that learned by centralized SSL which requires communication and excessive data storage costs, but also sometimes outperform representations extracted from decentralized SL which requires extra knowledge about the data labels. Finally, we provide theoretical insights into understanding why data heterogeneity is less of a concern for Dec-SSL objectives, and introduce feature alignment and clustering techniques to develop a new Dec-SSL algorithm that further improves the performance, in the face of highly non-IID data. Our study presents positive evidence to embrace unlabeled data in decentralized learning, and we hope to provide new insights into whether and why decentralized SSL is effective.
NeRF in the Palm of Your Hand: Corrective Augmentation for Robotics via Novel-View Synthesis
Zhou, Allan, Kim, Moo Jin, Wang, Lirui, Florence, Pete, Finn, Chelsea
Expert demonstrations are a rich source of supervision for training visual robotic manipulation policies, but imitation learning methods often require either a large number of demonstrations or expensive online expert supervision to learn reactive closed-loop behaviors. In this work, we introduce SPARTN (Synthetic Perturbations for Augmenting Robot Trajectories via NeRF): a fully-offline data augmentation scheme for improving robot policies that use eye-in-hand cameras. Our approach leverages neural radiance fields (NeRFs) to synthetically inject corrective noise into visual demonstrations, using NeRFs to generate perturbed viewpoints while simultaneously calculating the corrective actions. This requires no additional expert supervision or environment interaction, and distills the geometric information in NeRFs into a real-time reactive RGB-only policy. In a simulated 6-DoF visual grasping benchmark, SPARTN improves success rates by 2.8$\times$ over imitation learning without the corrective augmentations and even outperforms some methods that use online supervision. It additionally closes the gap between RGB-only and RGB-D success rates, eliminating the previous need for depth sensors. In real-world 6-DoF robotic grasping experiments from limited human demonstrations, our method improves absolute success rates by $22.5\%$ on average, including objects that are traditionally challenging for depth-based methods. See video results at \url{https://bland.website/spartn}.