Goto

Collaborating Authors

 Wang, Ke


Poly-MOT: A Polyhedral Framework For 3D Multi-Object Tracking

arXiv.org Artificial Intelligence

3D Multi-object tracking (MOT) empowers mobile robots to accomplish well-informed motion planning and navigation tasks by providing motion trajectories of surrounding objects. However, existing 3D MOT methods typically employ a single similarity metric and physical model to perform data association and state estimation for all objects. With large-scale modern datasets and real scenes, there are a variety of object categories that commonly exhibit distinctive geometric properties and motion patterns. In this way, such distinctions would enable various object categories to behave differently under the same standard, resulting in erroneous matches between trajectories and detections, and jeopardizing the reliability of downstream tasks (navigation, etc.). Towards this end, we propose Poly-MOT, an efficient 3D MOT method based on the Tracking-By-Detection framework that enables the tracker to choose the most appropriate tracking criteria for each object category. Specifically, Poly-MOT leverages different motion models for various object categories to characterize distinct types of motion accurately. We also introduce the constraint of the rigid structure of objects into a specific motion model to accurately describe the highly nonlinear motion of the object. Additionally, we introduce a two-stage data association strategy to ensure that objects can find the optimal similarity metric from three custom metrics for their categories and reduce missing matches. On the NuScenes dataset, our proposed method achieves state-of-the-art performance with 75.4\% AMOTA. The code is available at https://github.com/lixiaoyu2000/Poly-MOT


Online Multi-Contact Receding Horizon Planning via Value Function Approximation

arXiv.org Artificial Intelligence

Planning multi-contact motions in a receding horizon fashion requires a value function to guide the planning with respect to the future, e.g., building momentum to traverse large obstacles. Traditionally, the value function is approximated by computing trajectories in a prediction horizon (never executed) that foresees the future beyond the execution horizon. However, given the non-convex dynamics of multi-contact motions, this approach is computationally expensive. To enable online Receding Horizon Planning (RHP) of multi-contact motions, we find efficient approximations of the value function. Specifically, we propose a trajectory-based and a learning-based approach. In the former, namely RHP with Multiple Levels of Model Fidelity, we approximate the value function by computing the prediction horizon with a convex relaxed model. In the latter, namely Locally-Guided RHP, we learn an oracle to predict local objectives for locomotion tasks, and we use these local objectives to construct local value functions for guiding a short-horizon RHP. We evaluate both approaches in simulation by planning centroidal trajectories of a humanoid robot walking on moderate slopes, and on large slopes where the robot cannot maintain static balance. Our results show that locally-guided RHP achieves the best computation efficiency (95\%-98.6\% cycles converge online). This computation advantage enables us to demonstrate online receding horizon planning of our real-world humanoid robot Talos walking in dynamic environments that change on-the-fly.


Easy Guided Decoding in Providing Suggestions for Interactive Machine Translation

arXiv.org Artificial Intelligence

Machine translation technology has made great progress in recent years, but it cannot guarantee error free results. Human translators perform post editing on machine translations to correct errors in the scene of computer aided translation. In favor of expediting the post editing process, many works have investigated machine translation in interactive modes, in which machines can automatically refine the rest of translations constrained by human's edits. Translation Suggestion (TS), as an interactive mode to assist human translators, requires machines to generate alternatives for specific incorrect words or phrases selected by human translators. In this paper, we utilize the parameterized objective function of neural machine translation (NMT) and propose a novel constrained decoding algorithm, namely Prefix Suffix Guided Decoding (PSGD), to deal with the TS problem without additional training. Compared to the state of the art lexically constrained decoding method, PSGD improves translation quality by an average of $10.87$ BLEU and $8.62$ BLEU on the WeTS and the WMT 2022 Translation Suggestion datasets, respectively, and reduces decoding time overhead by an average of 63.4% tested on the WMT translation datasets. Furthermore, on both of the TS benchmark datasets, it is superior to other supervised learning systems trained with TS annotated data.


Disambiguated Lexically Constrained Neural Machine Translation

arXiv.org Artificial Intelligence

Lexically constrained neural machine translation (LCNMT), which controls the translation generation with pre-specified constraints, is important in many practical applications. Current approaches to LCNMT typically assume that the pre-specified lexical constraints are contextually appropriate. This assumption limits their application to real-world scenarios where a source lexicon may have multiple target constraints, and disambiguation is needed to select the most suitable one. In this paper, we propose disambiguated LCNMT (D-LCNMT) to solve the problem. D-LCNMT is a robust and effective two-stage framework that disambiguates the constraints based on contexts at first, then integrates the disambiguated constraints into LCNMT. Experimental results show that our approach outperforms strong baselines including existing data augmentation based approaches on benchmark datasets, and comprehensive experiments in scenarios where a source lexicon corresponds to multiple target constraints demonstrate the constraint disambiguation superiority of our approach.


Non-parametric, Nearest-neighbor-assisted Fine-tuning for Neural Machine Translation

arXiv.org Artificial Intelligence

Non-parametric, k-nearest-neighbor algorithms have recently made inroads to assist generative models such as language models and machine translation decoders. We explore whether such non-parametric models can improve machine translation models at the fine-tuning stage by incorporating statistics from the kNN predictions to inform the gradient updates for a baseline translation model. There are multiple methods which could be used to incorporate kNN statistics and we investigate gradient scaling by a gating mechanism, the kNN's ground truth probability, and reinforcement learning. For four standard in-domain machine translation datasets, compared with classic fine-tuning, we report consistent improvements of all of the three methods by as much as 1.45 BLEU and 1.28 BLEU for German-English and English-German translations respectively. Through qualitative analysis, we found particular improvements when it comes to translating grammatical relations or function words, which results in increased fluency of our model.


Gated Mechanism Enhanced Multi-Task Learning for Dialog Routing

arXiv.org Artificial Intelligence

Currently, human-bot symbiosis dialog systems, e.g., pre- and after-sales in E-commerce, are ubiquitous, and the dialog routing component is essential to improve the overall efficiency, reduce human resource cost, and enhance user experience. Although most existing methods can fulfil this requirement, they can only model single-source dialog data and cannot effectively capture the underlying knowledge of relations among data and subtasks. In this paper, we investigate this important problem by thoroughly mining both the data-to-task and task-to-task knowledge among various kinds of dialog data. To achieve the above targets, we propose a Gated Mechanism enhanced Multi-task Model (G3M), specifically including a novel dialog encoder and two tailored gated mechanism modules. The proposed method can play the role of hierarchical information filtering and is non-invasive to existing dialog systems. Based on two datasets collected from real world applications, extensive experimental results demonstrate the effectiveness of our method, which achieves the state-of-the-art performance by improving 8.7\%/11.8\% on RMSE metric and 2.2\%/4.4\% on F1 metric.


Demystifying What Code Summarization Models Learned

arXiv.org Artificial Intelligence

Study patterns that models have learned has long been a focus of pattern recognition research. Explaining what patterns are discovered from training data, and how patterns are generalized to unseen data are instrumental to understanding and advancing the pattern recognition methods. Unfortunately, the vast majority of the application domains deal with continuous data (i.e. statistical in nature) out of which extracted patterns can not be formally defined. For example, in image classification, there does not exist a principle definition for a label of cat or dog. Even in natural language, the meaning of a word can vary with the context it is surrounded by. Unlike the aforementioned data format, programs are a unique data structure with a well-defined syntax and semantics, which creates a golden opportunity to formalize what models have learned from source code. This paper presents the first formal definition of patterns discovered by code summarization models (i.e. models that predict the name of a method given its body), and gives a sound algorithm to infer a context-free grammar (CFG) that formally describes the learned patterns. We realize our approach in PATIC which produces CFGs for summarizing the patterns discovered by code summarization models. In particular, we pick two prominent instances, code2vec and code2seq, to evaluate PATIC. PATIC shows that the patterns extracted by each model are heavily restricted to local, and syntactic code structures with little to none semantic implication. Based on these findings, we present two example uses of the formal definition of patterns: a new method for evaluating the robustness and a new technique for improving the accuracy of code summarization models. Our work opens up this exciting, new direction of studying what models have learned from source code.


Grid-Centric Traffic Scenario Perception for Autonomous Driving: A Comprehensive Review

arXiv.org Artificial Intelligence

Grid-centric perception is a crucial field for mobile robot perception and navigation. Nonetheless, grid-centric perception is less prevalent than object-centric perception for autonomous driving as autonomous vehicles need to accurately perceive highly dynamic, large-scale outdoor traffic scenarios and the complexity and computational costs of grid-centric perception are high. The rapid development of deep learning techniques and hardware gives fresh insights into the evolution of grid-centric perception and enables the deployment of many real-time algorithms. Current industrial and academic research demonstrates the great advantages of grid-centric perception, such as comprehensive fine-grained environmental representation, greater robustness to occlusion, more efficient sensor fusion, and safer planning policies. Given the lack of current surveys for this rapidly expanding field, we present a hierarchically-structured review of grid-centric perception for autonomous vehicles. We organize previous and current knowledge of occupancy grid techniques and provide a systematic in-depth analysis of algorithms in terms of three aspects: feature representation, data utility, and applications in autonomous driving systems. Lastly, we present a summary of the current research trend and provide some probable future outlooks.


When and Where to Step: Terrain-Aware Real-Time Footstep Location and Timing Optimization for Bipedal Robots

arXiv.org Artificial Intelligence

Online footstep planning is essential for bipedal walking robots, allowing them to walk in the presence of disturbances and sensory noise. Most of the literature on the topic has focused on optimizing the footstep placement while keeping the step timing constant. In this work, we introduce a footstep planner capable of optimizing footstep placement and step time online. The proposed planner, consisting of an Interior Point Optimizer (IPOPT) and an optimizer based on Augmented Lagrangian (AL) method with analytical gradient descent, solves the full dynamics of the Linear Inverted Pendulum (LIP) model in real time to optimize for footstep location as well as step timing at the rate of 200~Hz. We show that such asynchronous real-time optimization with the AL method (ARTO-AL) provides the required robustness and speed for successful online footstep planning. Furthermore, ARTO-AL can be extended to plan footsteps in 3D, allowing terrain-aware footstep planning on uneven terrains. Compared to an algorithm with no footstep time adaptation, our proposed ARTO-AL demonstrates increased stability in simulated walking experiments as it can resist pushes on flat ground and on a $10^{\circ}$ ramp up to 120 N and 100 N respectively. For the video, see https://youtu.be/ABdnvPqCUu4. For code, see https://github.com/WangKeAlchemist/ARTO-AL/tree/master.


ResGrad: Residual Denoising Diffusion Probabilistic Models for Text to Speech

arXiv.org Artificial Intelligence

Denoising Diffusion Probabilistic Models (DDPMs) are emerging in text-to-speech (TTS) synthesis because of their strong capability of generating high-fidelity samples. However, their iterative refinement process in high-dimensional data space results in slow inference speed, which restricts their application in real-time systems. Previous works have explored speeding up by minimizing the number of inference steps but at the cost of sample quality. In this work, to improve the inference speed for DDPM-based TTS model while achieving high sample quality, we propose ResGrad, a lightweight diffusion model which learns to refine the output spectrogram of an existing TTS model (e.g., FastSpeech 2) by predicting the residual between the model output and the corresponding ground-truth speech. ResGrad has several advantages: 1) Compare with other acceleration methods for DDPM which need to synthesize speech from scratch, ResGrad reduces the complexity of task by changing the generation target from ground-truth mel-spectrogram to the residual, resulting into a more lightweight model and thus a smaller real-time factor. 2) ResGrad is employed in the inference process of the existing TTS model in a plug-and-play way, without re-training this model. We verify ResGrad on the single-speaker dataset LJSpeech and two more challenging datasets with multiple speakers (LibriTTS) and high sampling rate (VCTK). Experimental results show that in comparison with other speed-up methods of DDPMs: 1) ResGrad achieves better sample quality with the same inference speed measured by real-time factor; 2) with similar speech quality, ResGrad synthesizes speech faster than baseline methods by more than 10 times. Audio samples are available at https://resgrad1.github.io/.