Goto

Collaborating Authors

 Wang, Ke


CodeARC: Benchmarking Reasoning Capabilities of LLM Agents for Inductive Program Synthesis

arXiv.org Artificial Intelligence

Inductive program synthesis, or programming by example, requires synthesizing functions from input-output examples that generalize to unseen inputs. While large language model agents have shown promise in programming tasks guided by natural language, their ability to perform inductive program synthesis is underexplored. Existing evaluation protocols rely on static sets of examples and held-out tests, offering no feedback when synthesized functions are incorrect and failing to reflect real-world scenarios such as reverse engineering. We propose CodeARC, the Code Abstraction and Reasoning Challenge, a new evaluation framework where agents interact with a hidden target function by querying it with new inputs, synthesizing candidate functions, and iteratively refining their solutions using a differential testing oracle. This interactive setting encourages agents to perform function calls and self-correction based on feedback. We construct the first large-scale benchmark for general-purpose inductive program synthesis, featuring 1114 functions. Among 18 models evaluated, o3-mini performs best with a success rate of 52.7%, highlighting the difficulty of this task. Fine-tuning LLaMA-3.1-8B-Instruct on curated synthesis traces yields up to a 31% relative performance gain. CodeARC provides a more realistic and challenging testbed for evaluating LLM-based program synthesis and inductive reasoning.


Deep Contrastive Unlearning for Language Models

arXiv.org Artificial Intelligence

X, XX 2025 1 Deep Contrastive Unlearning for Language Models Estrid He, Tabinda Sarwar, Ibrahim Khalil, Xun Yi, and Ke Wang Abstract --The past a few years have witnessed the great success of large language models, demonstrating powerful capabilities in comprehending textual data and generating humanlike languages. Thus, to safeguard individuals' "right to be forgotten", there has been increasing interests in machine unlearning - the process of removing information carried by particular training samples from a model while not deteriorating its predictive quality. This is a challenging task due to the black-box nature of language models. Most existing studies focus on mitigating the impact of those forgot samples upon a model's outputs, and do not explicitly consider the geometric distributions of samples in the latent space of a model. T o address this issue, we propose a machine unlearning framework, named Deep C ontrastive U nlearning for fine-T uning (DeepCUT) language models. Our proposed model achieves machine unlearning by directly optimizing the latent space of a model. Comprehensive experiments on real-world datasets demonstrate the effectiveness and efficiency of DeepCUT with consistent and significant improvement over baseline methods. I NTRODUCTION I N the existing digital era, the availability of user-contributed data has increased exponentially. The rich and diverse data has been the engine of the significant advancements in the development of natural language processing (NLP) models. In the past a few years, the introduction of Transformer architecture [1] has revolutionized NLP, enabling language models such as BERT [2], RoBERTa [3].


Exploring the Potential of Large Multimodal Models as Effective Alternatives for Pronunciation Assessment

arXiv.org Artificial Intelligence

Large Multimodal Models (LMMs) have demonstrated exceptional performance across a wide range of domains. This paper explores their potential in pronunciation assessment tasks, with a particular focus on evaluating the capabilities of the Generative Pre-trained Transformer (GPT) model, specifically GPT-4o. Our study investigates its ability to process speech and audio for pronunciation assessment across multiple levels of granularity and dimensions, with an emphasis on feedback generation and scoring. For our experiments, we use the publicly available Speechocean762 dataset. The evaluation focuses on two key aspects: multi-level scoring and the practicality of the generated feedback. Scoring results are compared against the manual scores provided in the Speechocean762 dataset, while feedback quality is assessed using Large Language Models (LLMs). The findings highlight the effectiveness of integrating LMMs with traditional methods for pronunciation assessment, offering insights into the model's strengths and identifying areas for further improvement.


AttFC: Attention Fully-Connected Layer for Large-Scale Face Recognition with One GPU

arXiv.org Artificial Intelligence

Nowadays, with the advancement of deep neural networks (DNNs) and the availability of large-scale datasets, the face recognition (FR) model has achieved exceptional performance. However, since the parameter magnitude of the fully connected (FC) layer directly depends on the number of identities in the dataset. If training the FR model on large-scale datasets, the size of the model parameter will be excessively huge, leading to substantial demand for computational resources, such as time and memory. This paper proposes the attention fully connected (AttFC) layer, which could significantly reduce computational resources. AttFC employs an attention loader to generate the generative class center (GCC), and dynamically store the class center with Dynamic Class Container (DCC). DCC only stores a small subset of all class centers in FC, thus its parameter count is substantially less than the FC layer. Also, training face recognition models on large-scale datasets with one GPU often encounter out-of-memory (OOM) issues. AttFC overcomes this and achieves comparable performance to state-of-the-art methods.


SplatPose: Geometry-Aware 6-DoF Pose Estimation from Single RGB Image via 3D Gaussian Splatting

arXiv.org Artificial Intelligence

6-DoF pose estimation is a fundamental task in computer vision with wide-ranging applications in augmented reality and robotics. Existing single RGB-based methods often compromise accuracy due to their reliance on initial pose estimates and susceptibility to rotational ambiguity, while approaches requiring depth sensors or multi-view setups incur significant deployment costs. To address these limitations, we introduce SplatPose, a novel framework that synergizes 3D Gaussian Splatting (3DGS) with a dual-branch neural architecture to achieve high-precision pose estimation using only a single RGB image. Central to our approach is the Dual-Attention Ray Scoring Network (DARS-Net), which innovatively decouples positional and angular alignment through geometry-domain attention mechanisms, explicitly modeling directional dependencies to mitigate rotational ambiguity. Additionally, a coarse-to-fine optimization pipeline progressively refines pose estimates by aligning dense 2D features between query images and 3DGS-synthesized views, effectively correcting feature misalignment and depth errors from sparse ray sampling. Experiments on three benchmark datasets demonstrate that SplatPose achieves state-of-the-art 6-DoF pose estimation accuracy in single RGB settings, rivaling approaches that depend on depth or multi-view images.


EquiBench: Benchmarking Code Reasoning Capabilities of Large Language Models via Equivalence Checking

arXiv.org Artificial Intelligence

Equivalence checking, i.e., determining whether two programs produce identical outputs for all possible inputs, underpins a broad range of applications, including software refactoring, testing, and optimization. We present the task of equivalence checking as a new way to evaluate the code reasoning abilities of large language models (LLMs). We introduce EquiBench, a dataset of 2400 program pairs spanning four programming languages and six equivalence categories. These pairs are systematically generated through program analysis, compiler scheduling, and superoptimization, covering nontrivial structural transformations that demand deep semantic reasoning beyond simple syntactic variations. Our evaluation of 17 state-of-the-art LLMs shows that OpenAI o3-mini achieves the highest overall accuracy of 78.0%. In the most challenging categories, the best accuracies are 62.3% and 68.8%, only modestly above the 50% random baseline for binary classification, indicating significant room for improvement in current models' code reasoning capabilities.


EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown impressive reasoning capabilities in well-defined problems with clear solutions, such as mathematics and coding. However, they still struggle with complex real-world scenarios like business negotiations, which require strategic reasoning-an ability to navigate dynamic environments and align long-term goals amidst uncertainty. Existing methods for strategic reasoning face challenges in adaptability, scalability, and transferring strategies to new contexts. To address these issues, we propose explicit policy optimization (EPO) for strategic reasoning, featuring an LLM that provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior. To improve adaptability and policy transferability, we train the strategic reasoning model via multi-turn reinforcement learning (RL) using process rewards and iterative self-play, without supervised fine-tuning (SFT) as a preliminary step. Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment through enhanced strategic reasoning, achieving state-of-the-art performance on social dialogue and web navigation tasks. Our findings reveal various collaborative reasoning mechanisms emergent in EPO and its effectiveness in generating novel strategies, underscoring its potential for strategic reasoning in real-world applications.


SLVR: Securely Leveraging Client Validation for Robust Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) enables collaborative model training while keeping client data private. However, exposing individual client updates makes FL vulnerable to reconstruction attacks. Secure aggregation mitigates such privacy risks but prevents the server from verifying the validity of each client update, creating a privacy-robustness tradeoff. Recent efforts attempt to address this tradeoff by enforcing checks on client updates using zero-knowledge proofs, but they support limited predicates and often depend on public validation data. We propose SLVR, a general framework that securely leverages clients' private data through secure multi-party computation. By utilizing clients' data, SLVR not only eliminates the need for public validation data, but also enables a wider range of checks for robustness, including cross-client accuracy validation. It also adapts naturally to distribution shifts in client data as it can securely refresh its validation data up-to-date. Our empirical evaluations show that SLVR improves robustness against model poisoning attacks, particularly outperforming existing methods by up to 50% under adaptive attacks. Additionally, SLVR demonstrates effective adaptability and stable convergence under various distribution shift scenarios.


BounTCHA: A CAPTCHA Utilizing Boundary Identification in AI-extended Videos

arXiv.org Artificial Intelligence

In recent years, the rapid development of artificial intelligence (AI) especially multi-modal Large Language Models (MLLMs), has enabled it to understand text, images, videos, and other multimedia data, allowing AI systems to execute various tasks based on human-provided prompts. However, AI-powered bots have increasingly been able to bypass most existing CAPTCHA systems, posing significant security threats to web applications. This makes the design of new CAPTCHA mechanisms an urgent priority. We observe that humans are highly sensitive to shifts and abrupt changes in videos, while current AI systems still struggle to comprehend and respond to such situations effectively. Based on this observation, we design and implement BounTCHA, a CAPTCHA mechanism that leverages human perception of boundaries in video transitions and disruptions. By utilizing AI's capability to expand original videos with prompts, we introduce unexpected twists and changes to create a pipeline for generating short videos for CAPTCHA purposes. We develop a prototype and conduct experiments to collect data on humans' time biases in boundary identification. This data serves as a basis for distinguishing between human users and bots. Additionally, we perform a detailed security analysis of BounTCHA, demonstrating its resilience against various types of attacks. We hope that BounTCHA will act as a robust defense, safeguarding millions of web applications in the AI-driven era.


SDPO: Segment-Level Direct Preference Optimization for Social Agents

arXiv.org Artificial Intelligence

Social agents powered by large language models (LLMs) can simulate human social behaviors but fall short in handling complex goal-oriented social dialogues. Direct Preference Optimization (DPO) has proven effective in aligning LLM behavior with human preferences across a variety of agent tasks. Existing DPO-based approaches for multi-turn interactions are divided into turn-level and session-level methods. The turn-level method is overly fine-grained, focusing exclusively on individual turns, while session-level methods are too coarse-grained, often introducing training noise. To address these limitations, we propose Segment-Level Direct Preference Optimization (SDPO), which focuses on specific key segments within interactions to optimize multi-turn agent behavior while minimizing training noise. Evaluations on the SOTOPIA benchmark demonstrate that SDPO-tuned agents consistently outperform both existing DPO-based methods and proprietary LLMs like GPT-4o, underscoring SDPO's potential to advance the social intelligence of LLM-based agents. We release our code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/SDPO.