Goto

Collaborating Authors

 Wang, Jiayun


Ultrasound Lung Aeration Map via Physics-Aware Neural Operators

arXiv.org Artificial Intelligence

Lung ultrasound is a growing modality in clinics for diagnosing and monitoring acute and chronic lung diseases due to its low cost and accessibility. Lung ultrasound works by emitting diagnostic pulses, receiving pressure waves and converting them into radio frequency (RF) data, which are then processed into B-mode images with beamformers for radiologists to interpret. However, unlike conventional ultrasound for soft tissue anatomical imaging, lung ultrasound interpretation is complicated by complex reverberations from the pleural interface caused by the inability of ultrasound to penetrate air. The indirect B-mode images make interpretation highly dependent on reader expertise, requiring years of training, which limits its widespread use despite its potential for high accuracy in skilled hands. To address these challenges and democratize ultrasound lung imaging as a reliable diagnostic tool, we propose LUNA, an AI model that directly reconstructs lung aeration maps from RF data, bypassing the need for traditional beamformers and indirect interpretation of B-mode images. LUNA uses a Fourier neural operator, which processes RF data efficiently in Fourier space, enabling accurate reconstruction of lung aeration maps. LUNA offers a quantitative, reader-independent alternative to traditional semi-quantitative lung ultrasound scoring methods. The development of LUNA involves synthetic and real data: We simulate synthetic data with an experimentally validated approach and scan ex vivo swine lungs as real data. Trained on abundant simulated data and fine-tuned with a small amount of real-world data, LUNA achieves robust performance, demonstrated by an aeration estimation error of 9% in ex-vivo lung scans. We demonstrate the potential of reconstructing lung aeration maps from RF data, providing a foundation for improving lung ultrasound reproducibility and diagnostic utility.


Multi-Modal Self-Supervised Learning for Surgical Feedback Effectiveness Assessment

arXiv.org Artificial Intelligence

During surgical training, real-time feedback from trainers to trainees is important for preventing errors and enhancing long-term skill acquisition. Accurately predicting the effectiveness of this feedback, specifically whether it leads to a change in trainee behavior, is crucial for developing methods for improving surgical training and education. However, relying on human annotations to assess feedback effectiveness is laborious and prone to biases, underscoring the need for an automated, scalable, and objective method. Creating such an automated system poses challenges, as it requires an understanding of both the verbal feedback delivered by the trainer and the visual context of the real-time surgical scene. To address this, we propose a method that integrates information from transcribed verbal feedback and corresponding surgical video to predict feedback effectiveness. Our findings show that both transcribed feedback and surgical video are individually predictive of trainee behavior changes, and their combination achieves an AUROC of 0.70+/-0.02, improving prediction accuracy by up to 6.6%. Additionally, we introduce self-supervised fine-tuning as a strategy for enhancing surgical video representation learning, which is scalable and further enhances prediction performance. Our results demonstrate the potential of multi-modal learning to advance the automated assessment of surgical feedback.


Insight: A Multi-Modal Diagnostic Pipeline using LLMs for Ocular Surface Disease Diagnosis

arXiv.org Artificial Intelligence

Accurate diagnosis of ocular surface diseases is critical in optometry and ophthalmology, which hinge on integrating clinical data sources (e.g., meibography imaging and clinical metadata). Traditional human assessments lack precision in quantifying clinical observations, while current machine-based methods often treat diagnoses as multi-class classification problems, limiting the diagnoses to a predefined closed-set of curated answers without reasoning the clinical relevance of each variable to the diagnosis. To tackle these challenges, we introduce an innovative multi-modal diagnostic pipeline (MDPipe) by employing large language models (LLMs) for ocular surface disease diagnosis. We first employ a visual translator to interpret meibography images by converting them into quantifiable morphology data, facilitating their integration with clinical metadata and enabling the communication of nuanced medical insight to LLMs. To further advance this communication, we introduce a LLM-based summarizer to contextualize the insight from the combined morphology and clinical metadata, and generate clinical report summaries. Finally, we refine the LLMs' reasoning ability with domain-specific insight from real-life clinician diagnoses. Our evaluation across diverse ocular surface disease diagnosis benchmarks demonstrates that MDPipe outperforms existing standards, including GPT-4, and provides clinically sound rationales for diagnoses.


Trajectory Regularization Enhances Self-Supervised Geometric Representation

arXiv.org Artificial Intelligence

Self-supervised learning (SSL) has proven effective in learning high-quality representations for various downstream tasks, with a primary focus on semantic tasks. However, its application in geometric tasks remains underexplored, partially due to the absence of a standardized evaluation method for geometric representations. To address this gap, we introduce a new pose-estimation benchmark for assessing SSL geometric representations, which demands training without semantic or pose labels and achieving proficiency in both semantic and geometric downstream tasks. On this benchmark, we study enhancing SSL geometric representations without sacrificing semantic classification accuracy. We find that leveraging mid-layer representations improves pose-estimation performance by 10-20%. Further, we introduce an unsupervised trajectory-regularization loss, which improves performance by an additional 4% and improves generalization ability on out-of-distribution data. We hope the proposed benchmark and methods offer new insights and improvements in self-supervised geometric representation learning.


Deep Multimodal Fusion for Surgical Feedback Classification

arXiv.org Artificial Intelligence

Quantification of real-time informal feedback delivered by an experienced surgeon to a trainee during surgery is important for skill improvements in surgical training. Such feedback in the live operating room is inherently multimodal, consisting of verbal conversations (e.g., questions and answers) as well as non-verbal elements (e.g., through visual cues like pointing to anatomic elements). In this work, we leverage a clinically-validated five-category classification of surgical feedback: "Anatomic", "Technical", "Procedural", "Praise" and "Visual Aid". We then develop a multi-label machine learning model to classify these five categories of surgical feedback from inputs of text, audio, and video modalities. The ultimate goal of our work is to help automate the annotation of real-time contextual surgical feedback at scale. Our automated classification of surgical feedback achieves AUCs ranging from 71.5 to 77.6 with the fusion improving performance by 3.1%. We also show that high-quality manual transcriptions of feedback audio from experts improve AUCs to between 76.5 and 96.2, which demonstrates a clear path toward future improvements. Empirically, we find that the Staged training strategy, with first pre-training each modality separately and then training them jointly, is more effective than training different modalities altogether. We also present intuitive findings on the importance of modalities for different feedback categories. This work offers an important first look at the feasibility of automated classification of real-world live surgical feedback based on text, audio, and video modalities.


Open Long-Tailed Recognition in a Dynamic World

arXiv.org Artificial Intelligence

Abstract--Real world data often exhibits a long-tailed and open-ended (i.e. with unseen classes) distribution. A practical recognition system must balance between majority (head) and minority (tail) classes, generalize across the distribution, and acknowledge novelty upon the instances of unseen classes (open classes). We define Open Long-Tailed Recognition++ (OLTR++) as learning from such naturally distributed data and optimizing for the classification accuracy over a balanced test set which includes both known and open classes. OLTR++ handles imbalanced classification, few-shot learning, open-set recognition, and active learning in one integrated algorithm, whereas existing classification approaches often focus only on one or two aspects and deliver poorly over the entire spectrum. The key challenges are: 1) how to share visual knowledge between head and tail classes, 2) how to reduce confusion between tail and open classes, and 3) how to actively explore open classes with learned knowledge. Our algorithm, OLTR++, maps images to a feature space such that visual concepts can relate to each other through a memory association mechanism and a learned metric (dynamic meta-embedding) that both respects the closed world classification of seen classes and acknowledges the novelty of open classes. Additionally, we propose an active learning scheme based on visual memory, which learns to recognize open classes in a data-efficient manner for future expansions. On three large-scale open long-tailed datasets we curated from ImageNet (object-centric), Places (scene-centric), and MS1M (face-centric) data, as well as three standard benchmarks (CIFAR-10-LT, CIFAR-100-LT, and iNaturalist-18), our approach, as a unified framework, consistently demonstrates competitive performance. Notably, our approach also shows strong potential for the active exploration of open classes and the fairness analysis of minority groups.