Goto

Collaborating Authors

 Wang, Haotian


Mitigating Sensitive Information Leakage in LLMs4Code through Machine Unlearning

arXiv.org Artificial Intelligence

Large Language Models for Code (LLMs4Code) excel at code generation tasks, yielding promise to release developers from huge software development burdens. Nonetheless, these models have been shown to suffer from the significant privacy risks due to the potential leakage of sensitive information embedded during training, known as the memorization problem. Addressing this issue is crucial for ensuring privacy compliance and upholding user trust, but till now there is a dearth of dedicated studies in the literature that focus on this specific direction. Recently, machine unlearning has emerged as a promising solution by enabling models to "forget" sensitive information without full retraining, offering an efficient and scalable approach compared to traditional data cleaning methods. In this paper, we empirically evaluate the effectiveness of unlearning techniques for addressing privacy concerns in LLMs4Code.Specifically, we investigate three state-of-the-art unlearning algorithms and three well-known open-sourced LLMs4Code, on a benchmark that takes into consideration both the privacy data to be forgotten as well as the code generation capabilites of these models. Results show that it is feasible to mitigate the privacy concerns of LLMs4Code through machine unlearning while maintain their code generation capabilities at the same time. We also dissect the forms of privacy protection/leakage after unlearning and observe that there is a shift from direct leakage to indirect leakage, which underscores the need for future studies addressing this risk.


EmotiveTalk: Expressive Talking Head Generation through Audio Information Decoupling and Emotional Video Diffusion

arXiv.org Artificial Intelligence

Diffusion models have revolutionized the field of talking head generation, yet still face challenges in expressiveness, controllability, and stability in long-time generation. In this research, we propose an EmotiveTalk framework to address these issues. Firstly, to realize better control over the generation of lip movement and facial expression, a Vision-guided Audio Information Decoupling (V-AID) approach is designed to generate audio-based decoupled representations aligned with lip movements and expression. Specifically, to achieve alignment between audio and facial expression representation spaces, we present a Diffusion-based Co-speech Temporal Expansion (Di-CTE) module within V-AID to generate expression-related representations under multi-source emotion condition constraints. Then we propose a well-designed Emotional Talking Head Diffusion (ETHD) backbone to efficiently generate highly expressive talking head videos, which contains an Expression Decoupling Injection (EDI) module to automatically decouple the expressions from reference portraits while integrating the target expression information, achieving more expressive generation performance. Experimental results show that EmotiveTalk can generate expressive talking head videos, ensuring the promised controllability of emotions and stability during long-time generation, yielding state-of-the-art performance compared to existing methods.


AddrLLM: Address Rewriting via Large Language Model on Nationwide Logistics Data

arXiv.org Artificial Intelligence

Textual description of a physical location, commonly known as an address, plays an important role in location-based services(LBS) such as on-demand delivery and navigation. However, the prevalence of abnormal addresses, those containing inaccuracies that fail to pinpoint a location, have led to significant costs. Address rewriting has emerged as a solution to rectify these abnormal addresses. Despite the critical need, existing address rewriting methods are limited, typically tailored to correct specific error types, or frequently require retraining to process new address data effectively. In this study, we introduce AddrLLM, an innovative framework for address rewriting that is built upon a retrieval augmented large language model. AddrLLM overcomes aforementioned limitations through a meticulously designed Supervised Fine-Tuning module, an Address-centric Retrieval Augmented Generation module and a Bias-free Objective Alignment module. To the best of our knowledge, this study pioneers the application of LLM-based address rewriting approach to solve the issue of abnormal addresses. Through comprehensive offline testing with real-world data on a national scale and subsequent online deployment, AddrLLM has demonstrated superior performance in integration with existing logistics system. It has significantly decreased the rate of parcel re-routing by approximately 43\%, underscoring its exceptional efficacy in real-world applications.


InLINE: Inner-Layer Information Exchange for Multi-task Learning on Heterogeneous Graphs

arXiv.org Artificial Intelligence

Heterogeneous graph is an important structure for modeling complex relational data in real-world scenarios and usually involves various node prediction tasks within a single graph. Training these tasks separately may neglect beneficial information sharing, hence a preferred way is to learn several tasks in a same model by Multi-Task Learning (MTL). However, MTL introduces the issue of negative transfer, where the training of different tasks interferes with each other as they may focus on different information from the data, resulting in suboptimal performance. To solve the issue, existing MTL methods use separate backbones for each task, then selectively exchange beneficial features through interactions among the output embeddings from each layer of different backbones, which we refer to as outer-layer exchange. However, the negative transfer in heterogeneous graphs arises not simply from the varying importance of an individual node feature across tasks, but also from the varying importance of inter-relation between two nodes across tasks. These inter-relations are entangled in the output embedding, making it difficult for existing methods to discriminate beneficial information from the embedding. To address this challenge, we propose the Inner-Layer Information Exchange (InLINE) model that facilitate fine-grained information exchanges within each graph layer rather than through output embeddings. Specifically, InLINE consists of (1) Structure Disentangled Experts for layer-wise structure disentanglement, (2) Structure Disentangled Gates for assigning disentangled information to different tasks. Evaluations on two public datasets and a large industry dataset show that our model effectively alleviates the significant performance drop on specific tasks caused by negative transfer, improving Macro F1 by 6.3% on DBLP dataset and AUC by 3.6% on the industry dataset compared to SoA methods.


Enhancing Multimodal Sentiment Analysis for Missing Modality through Self-Distillation and Unified Modality Cross-Attention

arXiv.org Artificial Intelligence

In multimodal sentiment analysis, collecting text data is often more challenging than video or audio due to higher annotation costs and inconsistent automatic speech recognition (ASR) quality. To address this challenge, our study has developed a robust model that effectively integrates multimodal sentiment information, even in the absence of text modality. Specifically, we have developed a Double-Flow Self-Distillation Framework, including Unified Modality Cross-Attention (UMCA) and Modality Imagination Autoencoder (MIA), which excels at processing both scenarios with complete modalities and those with missing text modality. In detail, when the text modality is missing, our framework uses the LLM-based model to simulate the text representation from the audio modality, while the MIA module supplements information from the other two modalities to make the simulated text representation similar to the real text representation. To further align the simulated and real representations, and to enable the model to capture the continuous nature of sample orders in sentiment valence regression tasks, we have also introduced the Rank-N Contrast (RNC) loss function. When testing on the CMU-MOSEI, our model achieved outstanding performance on MAE and significantly outperformed other models when text modality is missing. The code is available at: https://github.com/WarmCongee/SDUMC


HypomimiaCoach: An AU-based Digital Therapy System for Hypomimia Detection & Rehabilitation with Parkinson's Disease

arXiv.org Artificial Intelligence

Hypomimia is a non-motor symptom of Parkinson's disease that manifests as delayed facial movements and expressions, along with challenges in articulation and emotion. Currently, subjective evaluation by neurologists is the primary method for hypomimia detection, and conventional rehabilitation approaches heavily rely on verbal prompts from rehabilitation physicians. There remains a deficiency in accessible, user-friendly and scientifically rigorous assistive tools for hypomimia treatments. To investigate this, we developed HypomimaCoach, an Action Unit (AU)-based digital therapy system for hypomimia detection and rehabilitation in Parkinson's disease. The HypomimaCoach system was designed to facilitate engagement through the incorporation of both relaxed and controlled rehabilitation exercises, while also stimulating initiative through the integration of digital therapies that incorporated traditional face training methods. We extract action unit(AU) features and their relationship for hypomimia detection. In order to facilitate rehabilitation, a series of training programmes have been devised based on the Action Units (AUs) and patients are provided with real-time feedback through an additional AU recognition model, which guides them through their training routines. A pilot study was conducted with seven participants in China, all of whom exhibited symptoms of Parkinson's disease hypomimia. The results of the pilot study demonstrated a positive impact on participants' self-efficacy, with favourable feedback received. Furthermore, physician evaluations validated the system's applicability in a therapeutic setting for patients with Parkinson's disease, as well as its potential value in clinical applications.


UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions

arXiv.org Artificial Intelligence

The rapid development of large language models (LLMs) has shown promising practical results. However, their low interpretability often leads to errors in unforeseen circumstances, limiting their utility. Many works have focused on creating comprehensive evaluation systems, but previous benchmarks have primarily assessed problem-solving abilities while neglecting the response's uncertainty, which may result in unreliability. Recent methods for measuring LLM reliability are resource-intensive and unable to test black-box models. To address this, we propose UBENCH, a comprehensive benchmark for evaluating LLM reliability. UBENCH includes 3,978 multiple-choice questions covering knowledge, language, understanding, and reasoning abilities. Experimental results show that UBENCH has achieved state-of-the-art performance, while its single-sampling method significantly saves computational resources compared to baseline methods that require multiple samplings. Additionally, based on UBENCH, we evaluate the reliability of 15 popular LLMs, finding GLM4 to be the most outstanding, closely followed by GPT-4. We also explore the impact of Chain-of-Thought prompts, role-playing prompts, option order, and temperature on LLM reliability, analyzing the varying effects on different LLMs.


PPA-Game: Characterizing and Learning Competitive Dynamics Among Online Content Creators

arXiv.org Artificial Intelligence

We introduce the Proportional Payoff Allocation Game (PPA-Game) to model how agents, akin to content creators on platforms like YouTube and TikTok, compete for divisible resources and consumers' attention. Payoffs are allocated to agents based on heterogeneous weights, reflecting the diversity in content quality among creators. Our analysis reveals that although a pure Nash equilibrium (PNE) is not guaranteed in every scenario, it is commonly observed, with its absence being rare in our simulations. Beyond analyzing static payoffs, we further discuss the agents' online learning about resource payoffs by integrating a multi-player multi-armed bandit framework. We propose an online algorithm facilitating each agent's maximization of cumulative payoffs over $T$ rounds. Theoretically, we establish that the regret of any agent is bounded by $O(\log^{1 + \eta} T)$ for any $\eta > 0$. Empirical results further validate the effectiveness of our approach.


A Study of Dropout-Induced Modality Bias on Robustness to Missing Video Frames for Audio-Visual Speech Recognition

arXiv.org Artificial Intelligence

Advanced Audio-Visual Speech Recognition (AVSR) systems have been observed to be sensitive to missing video frames, performing even worse than single-modality models. While applying the dropout technique to the video modality enhances robustness to missing frames, it simultaneously results in a performance loss when dealing with complete data input. In this paper, we investigate this contrasting phenomenon from the perspective of modality bias and reveal that an excessive modality bias on the audio caused by dropout is the underlying reason. Moreover, we present the Modality Bias Hypothesis (MBH) to systematically describe the relationship between modality bias and robustness against missing modality in multimodal systems. Building on these findings, we propose a novel Multimodal Distribution Approximation with Knowledge Distillation (MDA-KD) framework to reduce over-reliance on the audio modality and to maintain performance and robustness simultaneously. Finally, to address an entirely missing modality, we adopt adapters to dynamically switch decision strategies. The effectiveness of our proposed approach is evaluated and validated through a series of comprehensive experiments using the MISP2021 and MISP2022 datasets. Our code is available at https://github.com/dalision/ModalBiasAVSR


Composite Active Learning: Towards Multi-Domain Active Learning with Theoretical Guarantees

arXiv.org Artificial Intelligence

Active learning (AL) aims to improve model performance within a fixed labeling budget by choosing the most informative data points to label. Existing AL focuses on the single-domain setting, where all data come from the same domain (e.g., the same dataset). However, many real-world tasks often involve multiple domains. For example, in visual recognition, it is often desirable to train an image classifier that works across different environments (e.g., different backgrounds), where images from each environment constitute one domain. Such a multi-domain AL setting is challenging for prior methods because they (1) ignore the similarity among different domains when assigning labeling budget and (2) fail to handle distribution shift of data across different domains. In this paper, we propose the first general method, dubbed composite active learning (CAL), for multi-domain AL. Our approach explicitly considers the domain-level and instance-level information in the problem; CAL first assigns domain-level budgets according to domain-level importance, which is estimated by optimizing an upper error bound that we develop; with the domain-level budgets, CAL then leverages a certain instance-level query strategy to select samples to label from each domain. Our theoretical analysis shows that our method achieves a better error bound compared to current AL methods. Our empirical results demonstrate that our approach significantly outperforms the state-of-the-art AL methods on both synthetic and real-world multi-domain datasets. Code is available at https://github.com/Wang-ML-Lab/multi-domain-active-learning.