Goto

Collaborating Authors

 Wang, Haohan


Dataset Distillation via the Wasserstein Metric

arXiv.org Artificial Intelligence

Dataset distillation (DD) offers a compelling approach in computer vision, with the goal of condensing extensive datasets into smaller synthetic versions without sacrificing much of the model performance. In this paper, we continue to study the methods for DD, by addressing its conceptually core objective: how to capture the essential representation of extensive datasets in smaller, synthetic forms. We propose a novel approach utilizing the Wasserstein distance, a metric rooted in optimal transport theory, to enhance distribution matching in DD. Our method leverages the Wasserstein barycenter, offering a geometrically meaningful way to quantify distribution differences and effectively capture the centroid of a set of distributions. Our approach retains the computational benefits of distribution matching-based methods while achieving new state-of-the-art performance on several benchmarks. To provide useful prior for learning the images, we embed the synthetic data into the feature space of pretrained classification models to conduct distribution matching. Extensive testing on various high-resolution datasets confirms the effectiveness and adaptability of our method, indicating the promising yet unexplored capabilities of Wasserstein metrics in dataset distillation.


Adaptive Test-Time Personalization for Federated Learning

arXiv.org Artificial Intelligence

Personalized federated learning algorithms have shown promising results in adapting models to various distribution shifts. However, most of these methods require labeled data on testing clients for personalization, which is usually unavailable in real-world scenarios. In this paper, we introduce a novel setting called test-time personalized federated learning (TTPFL), where clients locally adapt a global model in an unsupervised way without relying on any labeled data during test-time. While traditional test-time adaptation (TTA) can be used in this scenario, most of them inherently assume training data come from a single domain, while they come from multiple clients (source domains) with different distributions. Overlooking these domain interrelationships can result in suboptimal generalization. Moreover, most TTA algorithms are designed for a specific kind of distribution shift and lack the flexibility to handle multiple kinds of distribution shifts in FL. In this paper, we find that this lack of flexibility partially results from their pre-defining which modules to adapt in the model. To tackle this challenge, we propose a novel algorithm called ATP to adaptively learns the adaptation rates for each module in the model from distribution shifts among source domains. Theoretical analysis proves the strong generalization of ATP. Extensive experiments demonstrate its superiority in handling various distribution shifts including label shift, image corruptions, and domain shift, outperforming existing TTA methods across multiple datasets and model architectures. Our code is available at https://github.com/baowenxuan/ATP .


ZooPFL: Exploring Black-box Foundation Models for Personalized Federated Learning

arXiv.org Artificial Intelligence

When personalized federated learning (FL) meets large foundation models, new challenges arise from various limitations in resources. In addition to typical limitations such as data, computation, and communication costs, access to the models is also often limited. This paper endeavors to solve both the challenges of limited resources and personalization. PFL that uses Zeroth-Order Optimization for Personalized Federated Learning. PFL avoids direct interference with the foundation models and instead learns to adapt its inputs through zeroth-order optimization. In addition, we employ simple yet effective linear projections to remap its predictions for personalization. To reduce the computation costs and enhance personalization, we propose input surgery to incorporate an auto-encoder with low-dimensional and client-specific embeddings. PFL to analyze its convergence. Extensive empirical experiments on computer vision and natural language processing tasks using popular foundation models demonstrate its effectiveness for FL on black-box foundation models. In recent years, the growing emphasis on data privacy and security has led to the emergence of federated learning (FL) (Warnat-Herresthal et al., 2021; Chen & Chao, 2022; Chen et al., 2023b; Castiglia et al., 2023; Rodrรญguez-Barroso et al., 2023; Kuang et al., 2023). FL enables collaborative learning while safeguarding data privacy and security across distributed clients (Yang et al., 2019). However, FL faces two key challenges: limited resources and distribution shifts (Figure 1 (a, b)). The rise of large foundation models (Bommasani et al., 2021) has amplified these challenges. The computational demands and communication costs associated with such models hinder the deployment of existing FL approaches (Figure 1a).


Understanding Adversarial Transferability in Federated Learning

arXiv.org Artificial Intelligence

We investigate the robustness and security issues from a novel and practical setting: a group of malicious clients has impacted the model during training by disguising their identities and acting as benign clients, and only revealing their adversary position after the training to conduct transferable adversarial attacks with their data, which is usually a subset of the data that FL system is trained with. Our aim is to offer a full understanding of the challenges the FL system faces in this practical setting across a spectrum of configurations. We notice that such an attack is possible, but the federated model is more robust compared with its centralized counterpart when the accuracy on clean images is comparable. Through our study, we hypothesized the robustness is from two factors: the decentralized training on distributed data and the averaging operation. We provide evidence from both the perspective of empirical experiments and theoretical analysis. Our work has implications for understanding the robustness of federated learning systems and poses a practical question for federated learning applications.


Foundation Model-oriented Robustness: Robust Image Model Evaluation with Pretrained Models

arXiv.org Artificial Intelligence

Machine learning has demonstrated remarkable performance over finite datasets, yet whether the scores over the fixed benchmarks can sufficiently indicate the model's performance in the real world is still in discussion. In reality, an ideal robust model will probably behave similarly to the oracle (e.g., the human users), thus a good evaluation protocol is probably to evaluate the models' behaviors in comparison to the oracle. In this paper, we introduce a new robustness measurement that directly measures the image classification model's performance compared with a surrogate oracle (i.e., a foundation model). Besides, we design a simple method that can accomplish the evaluation beyond the scope of the benchmarks. Our method extends the image datasets with new samples that are sufficiently perturbed to be distinct from the ones in the original sets, but are still bounded within the same image-label structure the original test image represents, constrained by a foundation model pretrained with a large amount of samples. As a result, our new method will offer us a new way to evaluate the models' robustness performance, free of limitations of fixed benchmarks or constrained perturbations, although scoped by the power of the oracle. In addition to the evaluation results, we also leverage our generated data to understand the behaviors of the model and our new evaluation strategies.


Expeditious Saliency-guided Mix-up through Random Gradient Thresholding

arXiv.org Artificial Intelligence

Mix-up training approaches have proven to be effective in improving the generalization ability of Deep Neural Networks. Over the years, the research community expands mix-up methods into two directions, with extensive efforts to improve saliency-guided procedures but minimal focus on the arbitrary path, leaving the randomization domain unexplored. In this paper, inspired by the superior qualities of each direction over one another, we introduce a novel method that lies at the junction of the two routes. By combining the best elements of randomness and saliency utilization, our method balances speed, simplicity, and accuracy. We name our method R-Mix following the concept of "Random Mix-up". We demonstrate its effectiveness in generalization, weakly supervised object localization, calibration, and robustness to adversarial attacks. Finally, in order to address the question of whether there exists a better decision protocol, we train a Reinforcement Learning agent that decides the mix-up policies based on the classifier's performance, reducing dependency on human-designed objectives and hyperparameter tuning. Extensive experiments further show that the agent is capable of performing at the cutting-edge level, laying the foundation for a fully automatic mix-up. Our code is released at [https://github.com/minhlong94/Random-Mixup].


Towards Trustworthy and Aligned Machine Learning: A Data-centric Survey with Causality Perspectives

arXiv.org Artificial Intelligence

The trustworthiness of machine learning has emerged as a critical topic in the field, encompassing various applications and research areas such as robustness, security, interpretability, and fairness. The last decade saw the development of numerous methods addressing these challenges. In this survey, we systematically review these advancements from a data-centric perspective, highlighting the shortcomings of traditional empirical risk minimization (ERM) training in handling challenges posed by the data. Interestingly, we observe a convergence of these methods, despite being developed independently across trustworthy machine learning subfields. Pearl's hierarchy of causality offers a unifying framework for these techniques. Accordingly, this survey presents the background of trustworthy machine learning development using a unified set of concepts, connects this language to Pearl's causal hierarchy, and finally discusses methods explicitly inspired by causality literature. We provide a unified language with mathematical vocabulary to link these methods across robustness, adversarial robustness, interpretability, and fairness, fostering a more cohesive understanding of the field. Further, we explore the trustworthiness of large pretrained models. After summarizing dominant techniques like fine-tuning, parameter-efficient fine-tuning, prompting, and reinforcement learning with human feedback, we draw connections between them and the standard ERM. This connection allows us to build upon the principled understanding of trustworthy methods, extending it to these new techniques in large pretrained models, paving the way for future methods. Existing methods under this perspective are also reviewed. Lastly, we offer a brief summary of the applications of these methods and discuss potential future aspects related to our survey. For more information, please visit http://trustai.one.


Optimizing the Collaboration Structure in Cross-Silo Federated Learning

arXiv.org Artificial Intelligence

In federated learning (FL), multiple clients collaborate to train machine learning models together while keeping their data decentralized. Through utilizing more training data, FL suffers from the potential negative transfer problem: the global FL model may even perform worse than the models trained with local data only. In this paper, we propose FedCollab, a novel FL framework that alleviates negative transfer by clustering clients into non-overlapping coalitions based on their distribution distances and data quantities. As a result, each client only collaborates with the clients having similar data distributions, and tends to collaborate with more clients when it has less data. We evaluate our framework with a variety of datasets, models, and types of non-IIDness. Our results demonstrate that FedCollab effectively mitigates negative transfer across a wide range of FL algorithms and consistently outperforms other clustered FL algorithms.


Leveraging Large Language Models for Scalable Vector Graphics-Driven Image Understanding

arXiv.org Artificial Intelligence

Recently, large language models (LLMs) have made significant advancements in natural language understanding and generation. However, their potential in computer vision remains largely unexplored. In this paper, we introduce a new, exploratory approach that enables LLMs to process images using the Scalable Vector Graphics (SVG) format. By leveraging the XML-based textual descriptions of SVG representations instead of raster images, we aim to bridge the gap between the visual and textual modalities, allowing LLMs to directly understand and manipulate images without the need for parameterized visual components. Our method facilitates simple image classification, generation, and in-context learning using only LLM capabilities. We demonstrate the promise of our approach across discriminative and generative tasks, highlighting its (i) robustness against distribution shift, (ii) substantial improvements achieved by tapping into the in-context learning abilities of LLMs, and (iii) image understanding and generation capabilities with human guidance. Our code, data, and models can be found here https://github.com/mu-cai/svg-llm.


BadLabel: A Robust Perspective on Evaluating and Enhancing Label-noise Learning

arXiv.org Artificial Intelligence

Label-noise learning (LNL) aims to increase the model's generalization given training data with noisy labels. To facilitate practical LNL algorithms, researchers have proposed different label noise types, ranging from class-conditional to instance-dependent noises. In this paper, we introduce a novel label noise type called BadLabel, which can significantly degrade the performance of existing LNL algorithms by a large margin. BadLabel is crafted based on the label-flipping attack against standard classification, where specific samples are selected and their labels are flipped to other labels so that the loss values of clean and noisy labels become indistinguishable. To address the challenge posed by BadLabel, we further propose a robust LNL method that perturbs the labels in an adversarial manner at each epoch to make the loss values of clean and noisy labels again distinguishable. Once we select a small set of (mostly) clean labeled data, we can apply the techniques of semi-supervised learning to train the model accurately. Empirically, our experimental results demonstrate that existing LNL algorithms are vulnerable to the newly introduced BadLabel noise type, while our proposed robust LNL method can effectively improve the generalization performance of the model under various types of label noise. The new dataset of noisy labels and the source codes of robust LNL algorithms are available at https://github.com/zjfheart/BadLabels.