Goto

Collaborating Authors

 Wang, Haohan


IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Agents

arXiv.org Artificial Intelligence

Computer vision is a critical component in a wide range of real-world applications, including plant monitoring in agriculture and handwriting classification in digital systems. However, developing high-performance computer vision models traditionally demands both machine learning (ML) expertise and domain-specific knowledge, making the process costly, labor-intensive, and inaccessible to many. Large language model (LLM) agents have emerged as a promising solution to automate this workflow, but most existing methods share a common limitation: they attempt to optimize entire pipelines in a single step before evaluation, making it difficult to attribute improvements to specific changes. This lack of granularity leads to unstable optimization and slower convergence, limiting their effectiveness. To address this, we introduce Iterative Refinement, a novel strategy for LLM-driven ML pipeline design inspired by how human ML experts iteratively refine models, focusing on one component at a time rather than making sweeping changes all at once. By systematically updating individual components based on real training feedback, Iterative Refinement improves stability, interpretability, and overall model performance. We implement this strategy in IMPROVE, an end-to-end LLM agent framework for automating and optimizing object classification pipelines. Through extensive evaluations across datasets of varying sizes and domains, including standard benchmarks and Kaggle competition datasets, we demonstrate that Iterative Refinement enables IMPROVE to consistently achieve better performance over existing zero-shot LLM-based approaches. These findings establish Iterative Refinement as an effective new strategy for LLM-driven ML automation and position IMPROVE as an accessible solution for building high-quality computer vision models without requiring ML expertise.


CTR-Driven Advertising Image Generation with Multimodal Large Language Models

arXiv.org Artificial Intelligence

In web data, advertising images are crucial for capturing user attention and improving advertising effectiveness. Most existing methods generate background for products primarily focus on the aesthetic quality, which may fail to achieve satisfactory online performance. To address this limitation, we explore the use of Multimodal Large Language Models (MLLMs) for generating advertising images by optimizing for Click-Through Rate (CTR) as the primary objective. Firstly, we build targeted pre-training tasks, and leverage a large-scale e-commerce multimodal dataset to equip MLLMs with initial capabilities for advertising image generation tasks. To further improve the CTR of generated images, we propose a novel reward model to fine-tune pre-trained MLLMs through Reinforcement Learning (RL), which can jointly utilize multimodal features and accurately reflect user click preferences. Meanwhile, a product-centric preference optimization strategy is developed to ensure that the generated background content aligns with the product characteristics after fine-tuning, enhancing the overall relevance and effectiveness of the advertising images. Extensive experiments have demonstrated that our method achieves state-of-the-art performance in both online and offline metrics. Our code and pre-trained models are publicly available at: https://github.com/Chenguoz/CAIG.


Examining Alignment of Large Language Models through Representative Heuristics: The Case of Political Stereotypes

arXiv.org Artificial Intelligence

Examining the alignment of large language models (LLMs) has become increasingly important, particularly when these systems fail to operate as intended. This study explores the challenge of aligning LLMs with human intentions and values, with specific focus on their political inclinations. Previous research has highlighted LLMs' propensity to display political leanings, and their ability to mimic certain political parties' stances on various issues. However, the extent and conditions under which LLMs deviate from empirical positions have not been thoroughly examined. To address this gap, our study systematically investigates the factors contributing to LLMs' deviations from empirical positions on political issues, aiming to quantify these deviations and identify the conditions that cause them. Drawing on cognitive science findings related to representativeness heuristics -- where individuals readily recall the representative attribute of a target group in a way that leads to exaggerated beliefs -- we scrutinize LLM responses through this heuristics lens. We conduct experiments to determine how LLMs exhibit stereotypes by inflating judgments in favor of specific political parties. Our results indicate that while LLMs can mimic certain political parties' positions, they often exaggerate these positions more than human respondents do. Notably, LLMs tend to overemphasize representativeness to a greater extent than humans. This study highlights the susceptibility of LLMs to representativeness heuristics, suggeseting potential vulnerabilities to political stereotypes. We propose prompt-based mitigation strategies that demonstrate effectiveness in reducing the influence of representativeness in LLM responses.


Revolve: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) have significantly enhanced the ability of LLM-based systems to perform complex tasks through natural language processing and tool interaction. However, optimizing these LLM-based systems for specific tasks remains challenging, often requiring manual interventions like prompt engineering and hyperparameter tuning. Existing automatic optimization methods, such as textual feedback-based techniques (e.g., TextGrad), tend to focus on immediate feedback, analogous to using immediate derivatives in traditional numerical gradient descent. However, relying solely on such feedback can be limited when the adjustments made in response to this feedback are either too small or fluctuate irregularly, potentially slowing down or even stalling the optimization process. To overcome these challenges, more adaptive methods are needed, especially in situations where the system's response is evolving slowly or unpredictably. In this paper, we introduce REVOLVE, an optimization method that tracks how "R"esponses "EVOLVE" across iterations in LLM systems. By focusing on the evolution of responses over time, REVOLVE enables more stable and effective optimization by making thoughtful, progressive adjustments at each step. Experimental results demonstrate that REVOLVE outperforms competitive baselines, achieving a 7.8% improvement in prompt optimization, a 20.72% gain in solution refinement, and a 29.17% increase in code optimization. Additionally, REVOLVE converges in fewer iterations, resulting in significant computational savings. These advantages highlight its adaptability and efficiency, positioning REVOLVE as a valuable tool for optimizing LLM-based systems and accelerating the development of next-generation AI technologies. Code is available at: https://github.com/Peiyance/REVOLVE.


MemeCLIP: Leveraging CLIP Representations for Multimodal Meme Classification

arXiv.org Artificial Intelligence

The complexity of text-embedded images presents a formidable challenge in machine learning given the need for multimodal understanding of multiple aspects of expression conveyed by them. While previous research in multimodal analysis has primarily focused on singular aspects such as hate speech and its subclasses, this study expands this focus to encompass multiple aspects of linguistics: hate, targets of hate, stance, and humor. We introduce a novel dataset PrideMM comprising 5,063 text-embedded images associated with the LGBTQ+ Pride movement, thereby addressing a serious gap in existing resources. We conduct extensive experimentation on PrideMM by using unimodal and multimodal baseline methods to establish benchmarks for each task. Additionally, we propose a novel framework MemeCLIP for efficient downstream learning while preserving the knowledge of the pre-trained CLIP model. The results of our experiments show that MemeCLIP achieves superior performance compared to previously proposed frameworks on two real-world datasets. We further compare the performance of MemeCLIP and zero-shot GPT-4 on the hate classification task. Finally, we discuss the shortcomings of our model by qualitatively analyzing misclassified samples. Our code and dataset are publicly available at: https://github.com/SiddhantBikram/MemeCLIP.


Conflict-Aware Adversarial Training

arXiv.org Artificial Intelligence

Adversarial training is the most effective method to obtain adversarial robustness for deep neural networks by directly involving adversarial samples in the training procedure. To obtain an accurate and robust model, the weighted-average method is applied to optimize standard loss and adversarial loss simultaneously. In this paper, we argue that the weighted-average method does not provide the best tradeoff for the standard performance and adversarial robustness. We argue that the failure of the weighted-average method is due to the conflict between the gradients derived from standard and adversarial loss, and further demonstrate such a conflict increases with attack budget theoretically and practically. To alleviate this problem, we propose a new trade-off paradigm for adversarial training with a conflict-aware factor for the convex combination of standard and adversarial loss, named \textbf{Conflict-Aware Adversarial Training~(CA-AT)}. Comprehensive experimental results show that CA-AT consistently offers a superior trade-off between standard performance and adversarial robustness under the settings of adversarial training from scratch and parameter-efficient finetuning.


DistDD: Distributed Data Distillation Aggregation through Gradient Matching

arXiv.org Artificial Intelligence

In this paper, we introduce DistDD, a novel approach within the federated learning framework that reduces the need for repetitive communication by distilling data directly on clients' devices. Unlike traditional federated learning that requires iterative model updates across nodes, DistDD facilitates a one-time distillation process that extracts a global distilled dataset, maintaining the privacy standards of federated learning while significantly cutting down communication costs. By leveraging the DistDD's distilled dataset, the developers of the FL can achieve just-in-time parameter tuning and neural architecture search over FL without repeating the whole FL process multiple times. We provide a detailed convergence proof of the DistDD algorithm, reinforcing its mathematical stability and reliability for practical applications. Our experiments demonstrate the effectiveness and robustness of DistDD, particularly in non-i.i.d. and mislabeled data scenarios, showcasing its potential to handle complex real-world data challenges distinctively from conventional federated learning methods. We also evaluate DistDD's application in the use case and prove its effectiveness and communication-savings in the NAS use case.


Simple Unsupervised Knowledge Distillation With Space Similarity

arXiv.org Artificial Intelligence

As per recent studies, Self-supervised learning (SSL) does not readily extend to smaller architectures. One direction to mitigate this shortcoming while simultaneously training a smaller network without labels is to adopt unsupervised knowledge distillation (UKD). Existing UKD approaches handcraft preservation worthy inter/intra sample relationships between the teacher and its student. However, this may overlook/ignore other key relationships present in the mapping of a teacher. In this paper, instead of heuristically constructing preservation worthy relationships between samples, we directly motivate the student to model the teacher's embedding manifold. If the mapped manifold is similar, all inter/intra sample relationships are indirectly conserved. We first demonstrate that prior methods cannot preserve teacher's latent manifold due to their sole reliance on $L_2$ normalised embedding features. Subsequently, we propose a simple objective to capture the lost information due to normalisation. Our proposed loss component, termed \textbf{space similarity}, motivates each dimension of a student's feature space to be similar to the corresponding dimension of its teacher. We perform extensive experiments demonstrating strong performance of our proposed approach on various benchmarks.


Quantitative Evaluation of the Saliency Map for Alzheimer's Disease Classifier with Anatomical Segmentation

arXiv.org Artificial Intelligence

Saliency maps have been widely used to interpret deep learning classifiers for Alzheimer's disease (AD). However, since AD is heterogeneous and has multiple subtypes, the pathological mechanism of AD remains not fully understood and may vary from patient to patient. Due to the lack of such understanding, it is difficult to comprehensively and effectively assess the saliency map of AD classifier. In this paper, we utilize the anatomical segmentation to allocate saliency values into different brain regions. By plotting the distributions of saliency maps corresponding to AD and NC (Normal Control), we can gain a comprehensive view of the model's decisions process. In order to leverage the fact that the brain volume shrinkage happens in AD patients during disease progression, we define a new evaluation metric, brain volume change score (VCS), by computing the average Pearson correlation of the brain volume changes and the saliency values of a model in different brain regions for each patient. Thus, the VCS metric can help us gain some knowledge of how saliency maps resulting from different models relate to the changes of the volumes across different regions in the whole brain. We trained candidate models on the ADNI dataset and tested on three different datasets. Our results indicate: (i) models with higher VCSs tend to demonstrate saliency maps with more details relevant to the AD pathology, (ii) using gradient-based adversarial training strategies such as FGSM and stochastic masking can improve the VCSs of the models.


JailbreakZoo: Survey, Landscapes, and Horizons in Jailbreaking Large Language and Vision-Language Models

arXiv.org Artificial Intelligence

The rapid evolution of artificial intelligence (AI) through developments in Large Language Models (LLMs) and Vision-Language Models (VLMs) has brought significant advancements across various technological domains. While these models enhance capabilities in natural language processing and visual interactive tasks, their growing adoption raises critical concerns regarding security and ethical alignment. This survey provides an extensive review of the emerging field of jailbreaking--deliberately circumventing the ethical and operational boundaries of LLMs and VLMs--and the consequent development of defense mechanisms. Our study categorizes jailbreaks into seven distinct types and elaborates on defense strategies that address these vulnerabilities. Through this comprehensive examination, we identify research gaps and propose directions for future studies to enhance the security frameworks of LLMs and VLMs. Our findings underscore the necessity for a unified perspective that integrates both jailbreak strategies and defensive solutions to foster a robust, secure, and reliable environment for the next generation of language models. More details can be found on our website: \url{https://chonghan-chen.com/llm-jailbreak-zoo-survey/}.