Goto

Collaborating Authors

 Wang, Haobo


How to Steer LLM Latents for Hallucination Detection?

arXiv.org Artificial Intelligence

Hallucinations in LLMs pose a significant concern to their safe deployment in real-world applications. Recent approaches have leveraged the latent space of LLMs for hallucination detection, but their embeddings, optimized for linguistic coherence rather than factual accuracy, often fail to clearly separate truthful and hallucinated content. To this end, we propose the Truthfulness Separator Vector (TSV), a lightweight and flexible steering vector that reshapes the LLM's representation space during inference to enhance the separation between truthful and hallucinated outputs, without altering model parameters. Our two-stage framework first trains TSV on a small set of labeled exemplars to form compact and well-separated clusters. It then augments the exemplar set with unlabeled LLM generations, employing an optimal transport-based algorithm for pseudo-labeling combined with a confidence-based filtering process. Extensive experiments demonstrate that TSV achieves state-of-the-art performance with minimal labeled data, exhibiting strong generalization across datasets and providing a practical solution for real-world LLM applications.


Category-free Out-of-Distribution Node Detection with Feature Resonance

arXiv.org Artificial Intelligence

Detecting out-of-distribution (OOD) nodes in the graph-based machine-learning field is challenging, particularly when in-distribution (ID) node multi-category labels are unavailable. Thus, we focus on feature space rather than label space and find that, ideally, during the optimization of known ID samples, unknown ID samples undergo more significant representation changes than OOD samples, even if the model is trained to fit random targets, which we called the Feature Resonance phenomenon. The rationale behind it is that even without gold labels, the local manifold may still exhibit smooth resonance. Based on this, we further develop a novel graph OOD framework, dubbed Resonance-based Separation and Learning (RSL), which comprises two core modules: (i) a more practical micro-level proxy of feature resonance that measures the movement of feature vectors in one training step. (ii) integrate with synthetic OOD nodes strategy to train an effective OOD classifier. Theoretically, we derive an error bound showing the superior separability of OOD nodes during the resonance period. Empirically, RSL achieves state-of-the-art performance, reducing the FPR95 metric by an average of 18.51% across five real-world datasets.


Towards Robust Incremental Learning under Ambiguous Supervision

arXiv.org Artificial Intelligence

Traditional Incremental Learning (IL) targets to handle sequential fully-supervised learning problems where novel classes emerge from time to time. However, due to inherent annotation uncertainty and ambiguity, collecting high-quality annotated data in a dynamic learning system can be extremely expensive. To mitigate this problem, we propose a novel weakly-supervised learning paradigm called Incremental Partial Label Learning (IPLL), where the sequentially arrived data relate to a set of candidate labels rather than the ground truth. Technically, we develop the Prototype-Guided Disambiguation and Replay Algorithm (PGDR) which leverages the class prototypes as a proxy to mitigate two intertwined challenges in IPLL, i.e., label ambiguity and catastrophic forgetting. To handle the former, PGDR encapsulates a momentum-based pseudo-labeling algorithm along with prototype-guided initialization, resulting in a balanced perception of classes. To alleviate forgetting, we develop a memory replay technique that collects well-disambiguated samples while maintaining representativeness and diversity. By jointly distilling knowledge from curated memory data, our framework exhibits a great disambiguation ability for samples of new tasks and achieves less forgetting of knowledge. Extensive experiments demonstrate that PGDR achieves superior


TableGPT2: A Large Multimodal Model with Tabular Data Integration

arXiv.org Artificial Intelligence

The emergence of models like GPTs, Claude, LLaMA, and Qwen has reshaped AI applications, presenting vast new opportunities across industries. Yet, the integration of tabular data remains notably underdeveloped, despite its foundational role in numerous real-world domains. This gap is critical for three main reasons. First, database or data warehouse data integration is essential for advanced applications; second, the vast and largely untapped resource of tabular data offers immense potential for analysis; and third, the business intelligence domain specifically demands adaptable, precise solutions that many current LLMs may struggle to provide. In response, we introduce TableGPT2, a model rigorously pre-trained and fine-tuned with over 593.8K tables and 2.36M high-quality query-table-output tuples, a scale of table-related data unprecedented in prior research. This extensive training enables TableGPT2 to excel in table-centric tasks while maintaining strong general language and coding abilities. One of TableGPT2's key innovations is its novel table encoder, specifically designed to capture schema-level and cell-level information. This encoder strengthens the model's ability to handle ambiguous queries, missing column names, and irregular tables commonly encountered in real-world applications. Similar to visual language models, this pioneering approach integrates with the decoder to form a robust large multimodal model. We believe the results are compelling: over 23 benchmarking metrics, TableGPT2 achieves an average performance improvement of 35.20% in the 7B model and 49.32% in the 72B model over prior benchmark-neutral LLMs, with robust general-purpose capabilities intact.


FlowBench: Revisiting and Benchmarking Workflow-Guided Planning for LLM-based Agents

arXiv.org Artificial Intelligence

LLM-based agents have emerged as promising tools, which are crafted to fulfill complex tasks by iterative planning and action. However, these agents are susceptible to undesired planning hallucinations when lacking specific knowledge for expertise-intensive tasks. To address this, preliminary attempts are made to enhance planning reliability by incorporating external workflow-related knowledge. Despite the promise, such infused knowledge is mostly disorganized and diverse in formats, lacking rigorous formalization and comprehensive comparisons. Motivated by this, we formalize different formats of workflow knowledge and present FlowBench, the first benchmark for workflow-guided planning. FlowBench covers 51 different scenarios from 6 domains, with knowledge presented in diverse formats. To assess different LLMs on FlowBench, we design a multi-tiered evaluation framework. We evaluate the efficacy of workflow knowledge across multiple formats, and the results indicate that current LLM agents need considerable improvements for satisfactory planning. We hope that our challenging benchmark can pave the way for future agent planning research.


On LLMs-Driven Synthetic Data Generation, Curation, and Evaluation: A Survey

arXiv.org Artificial Intelligence

Within the evolving landscape of deep learning, the dilemma of data quantity and quality has been a long-standing problem. The recent advent of Large Language Models (LLMs) offers a data-centric solution to alleviate the limitations of real-world data with synthetic data generation. However, current investigations into this field lack a unified framework and mostly stay on the surface. Therefore, this paper provides an organization of relevant studies based on a generic workflow of synthetic data generation. By doing so, we highlight the gaps within existing research and outline prospective avenues for future study. This work aims to shepherd the academic and industrial communities towards deeper, more methodical inquiries into the capabilities and applications of LLMs-driven synthetic data generation.


NoisyGL: A Comprehensive Benchmark for Graph Neural Networks under Label Noise

arXiv.org Artificial Intelligence

However, their performance often hinges on high-quality node labels, which are challenging to obtain in real-world scenarios due to unreliable sources or adversarial attacks. Consequently, label noise is common in real-world graph data, negatively impacting GNNs by propagating incorrect information during training. To address this issue, the study of Graph Neural Networks under Label Noise (GLN) has recently gained traction. However, due to variations in dataset selection, data splitting, and preprocessing techniques, the community currently lacks a comprehensive benchmark, which impedes deeper understanding and further development of GLN. To fill this gap, we introduce NoisyGL in this paper, the first comprehensive benchmark for graph neural networks under label noise. NoisyGL enables fair comparisons and detailed analyses of GLN methods on noisy labeled graph data across various datasets, with unified experimental settings and interface. Our benchmark has uncovered several important insights that were missed in previous research, and we believe these findings will be highly beneficial for future studies. We hope our open-source benchmark library will foster further advancements in this field.


Data Contamination Calibration for Black-box LLMs

arXiv.org Artificial Intelligence

The rapid advancements of Large Language Models (LLMs) tightly associate with the expansion of the training data size. However, the unchecked ultra-large-scale training sets introduce a series of potential risks like data contamination, i.e. the benchmark data is used for training. In this work, we propose a holistic method named Polarized Augment Calibration (PAC) along with a new to-be-released dataset to detect the contaminated data and diminish the contamination effect. PAC extends the popular MIA (Membership Inference Attack) -- from machine learning community -- by forming a more global target at detecting training data to Clarify invisible training data. As a pioneering work, PAC is very much plug-and-play that can be integrated with most (if not all) current white- and black-box LLMs. By extensive experiments, PAC outperforms existing methods by at least 4.5%, towards data contamination detection on more 4 dataset formats, with more than 10 base LLMs. Besides, our application in real-world scenarios highlights the prominent presence of contamination and related issues.


RECOST: External Knowledge Guided Data-efficient Instruction Tuning

arXiv.org Artificial Intelligence

In the current landscape of large language models (LLMs), the process of instruction tuning serves as an essential step. Considering the high computing power overhead, data-efficient instruction tuning was proposed to reduce the training data size in this process, aiming at selecting high-quality instructional data. Nevertheless, we argue that most current data-efficient instruction-tuning methods are highly dependent on the quality of the original instruction-tuning dataset. When it comes to datasets synthesized by LLMs, a common scenario in this field, dirty samples will even be selected with a higher probability than other samples. To address these challenges, we utilized external knowledge (relevant examples or paragraphs) to evaluate those samples synthesized by LLMs with an in-context-based relative predictive entropy. Based on the new metric, we proposed a framework, dubbed as \textbf{RECOST}, which integrates external-knowledge-base re-ranking and diversity-consistent sampling into a single pipeline. Through extensive experiments on several synthetic datasets (Alpaca and Alpaca-gpt4), we demonstrate the effectiveness of our method and achieve even better results with only \textbf{1\%} of the full dataset.


Debiased Sample Selection for Combating Noisy Labels

arXiv.org Artificial Intelligence

Learning with noisy labels aims to ensure model generalization given a label-corrupted training set. The sample selection strategy achieves promising performance by selecting a label-reliable subset for model training. In this paper, we empirically reveal that existing sample selection methods suffer from both data and training bias that are represented as imbalanced selected sets and accumulation errors in practice, respectively. However, only the training bias was handled in previous studies. To address this limitation, we propose a noIse-Tolerant Expert Model (ITEM) for debiased learning in sample selection. Specifically, to mitigate the training bias, we design a robust network architecture that integrates with multiple experts. Compared with the prevailing double-branch network, our network exhibits better performance of selection and prediction by ensembling these experts while training with fewer parameters. Meanwhile, to mitigate the data bias, we propose a mixed sampling strategy based on two weight-based data samplers. By training on the mixture of two class-discriminative mini-batches, the model mitigates the effect of the imbalanced training set while avoiding sparse representations that are easily caused by sampling strategies. Extensive experiments and analyses demonstrate the effectiveness of ITEM. Our code is available at this url \href{https://github.com/1998v7/ITEM}{ITEM}.