Plotting

 Wang, Feng


An Integrated Data Processing Framework for Pretraining Foundation Models

arXiv.org Artificial Intelligence

The ability of the foundation models heavily relies on large-scale, diverse, and high-quality pretraining data. In order to improve data quality, researchers and practitioners often have to manually curate datasets from difference sources and develop dedicated data cleansing pipeline for each data repository. Lacking a unified data processing framework, this process is repetitive and cumbersome. To mitigate this issue, we propose a data processing framework that integrates a Processing Module which consists of a series of operators at different granularity levels, and an Analyzing Module which supports probing and evaluation of the refined data. The proposed framework is easy to use and highly flexible. In this demo paper, we first introduce how to use this framework with some example use cases and then demonstrate its effectiveness in improving the data quality with an automated evaluation with ChatGPT and an end-to-end evaluation in pretraining the GPT-2 model. The code and demonstration videos are accessible on GitHub.


VisRec: A Semi-Supervised Approach to Radio Interferometric Data Reconstruction

arXiv.org Artificial Intelligence

Radio telescopes produce visibility data about celestial objects, but these data are sparse and noisy. As a result, images created on raw visibility data are of low quality. Recent studies have used deep learning models to reconstruct visibility data to get cleaner images. However, these methods rely on a substantial amount of labeled training data, which requires significant labeling effort from radio astronomers. Addressing this challenge, we propose VisRec, a model-agnostic semi-supervised learning approach to the reconstruction of visibility data. Specifically, VisRec consists of both a supervised learning module and an unsupervised learning module. In the supervised learning module, we introduce a set of data augmentation functions to produce diverse training examples. In comparison, the unsupervised learning module in VisRec augments unlabeled data and uses reconstructions from non-augmented visibility data as pseudo-labels for training. This hybrid approach allows VisRec to effectively leverage both labeled and unlabeled data. This way, VisRec performs well even when labeled data is scarce. Our evaluation results show that VisRec outperforms all baseline methods in reconstruction quality, robustness against common observation perturbation, and generalizability to different telescope configurations.


Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings

arXiv.org Artificial Intelligence

We introduce a novel suite of state-of-the-art bilingual text embedding models that are designed to support English and another target language. These models are capable of processing lengthy text inputs with up to 8192 tokens, making them highly versatile for a range of natural language processing tasks such as text retrieval, clustering, and semantic textual similarity (STS) calculations. By focusing on bilingual models and introducing a unique multi-task learning objective, we have significantly improved the model performance on STS tasks, which outperforms the capabilities of existing multilingual models in both target language understanding and cross-lingual evaluation tasks. Moreover, our bilingual models are more efficient, requiring fewer parameters and less memory due to their smaller vocabulary needs. Furthermore, we have expanded the Massive Text Embedding Benchmark (MTEB) to include benchmarks for German and Spanish embedding models. This integration aims to stimulate further research and advancement in text embedding technologies for these languages.


Seismic Traveltime Tomography with Label-free Learning

arXiv.org Artificial Intelligence

Deep learning techniques have been used to build velocity models (VMs) for seismic traveltime tomography and have shown encouraging performance in recent years. However, they need to generate labeled samples (i.e., pairs of input and label) to train the deep neural network (NN) with end-to-end learning, and the real labels for field data inversion are usually missing or very expensive. Some traditional tomographic methods can be implemented quickly, but their effectiveness is often limited by prior assumptions. To avoid generating labeled samples, we propose a novel method by integrating deep learning and dictionary learning to enhance the VMs with low resolution by using the traditional tomography-least square method (LSQR). We first design a type of shallow and simple NN to reduce computational cost followed by proposing a two-step strategy to enhance the VMs with low resolution: (1) Warming up. An initial dictionary is trained from the estimation by LSQR through dictionary learning method; (2) Dictionary optimization. The initial dictionary obtained in the warming-up step will be optimized by the NN, and then it will be used to reconstruct high-resolution VMs with the reference slowness and the estimation by LSQR. Furthermore, we design a loss function to minimize traveltime misfit to ensure that NN training is label-free, and the optimized dictionary can be obtained after each epoch of NN training. We demonstrate the effectiveness of the proposed method through numerical tests.


Semantic-Guided Generative Image Augmentation Method with Diffusion Models for Image Classification

arXiv.org Artificial Intelligence

Existing image augmentation methods consist of two categories: perturbation-based methods and generative methods. Perturbation-based methods apply pre-defined perturbations to augment an original image, but only locally vary the image, thus lacking image diversity. In contrast, generative methods bring more image diversity in the augmented images but may not preserve semantic consistency, thus incorrectly changing the essential semantics of the original image. To balance image diversity and semantic consistency in augmented images, we propose SGID, a Semantic-guided Generative Image augmentation method with Diffusion models for image classification. Specifically, SGID employs diffusion models to generate augmented images with good image diversity. More importantly, SGID takes image labels and captions as guidance to maintain semantic consistency between the augmented and original images. Experimental results show that SGID outperforms the best augmentation baseline by 1.72% on ResNet-50 (from scratch), 0.33% on ViT (ImageNet-21k), and 0.14% on CLIP-ViT (LAION-2B). Moreover, SGID can be combined with other image augmentation baselines and further improves the overall performance. We demonstrate the semantic consistency and image diversity of SGID through quantitative human and automated evaluations, as well as qualitative case studies.


LightHouse: A Survey of AGI Hallucination

arXiv.org Artificial Intelligence

With the development of artificial intelligence, large-scale models have become increasingly intelligent. However, numerous studies indicate that hallucinations within these large models are a bottleneck hindering the development of AI research. In the pursuit of achieving strong artificial intelligence, a significant volume of research effort is being invested in the AGI (Artificial General Intelligence) hallucination research. Previous explorations have been conducted in researching hallucinations within LLMs (Large Language Models). As for multimodal AGI, research on hallucinations is still in an early stage. To further the progress of research in the domain of hallucinatory phenomena, we present a bird's eye view of hallucinations in AGI, summarizing the current work on AGI hallucinations and proposing some directions for future research.


Scientific Preparation for CSST: Classification of Galaxy and Nebula/Star Cluster Based on Deep Learning

arXiv.org Artificial Intelligence

The Chinese Space Station Telescope (abbreviated as CSST) is a future advanced space telescope. Real-time identification of galaxy and nebula/star cluster (abbreviated as NSC) images is of great value during CSST survey. While recent research on celestial object recognition has progressed, the rapid and efficient identification of high-resolution local celestial images remains challenging. In this study, we conducted galaxy and NSC image classification research using deep learning methods based on data from the Hubble Space Telescope. We built a Local Celestial Image Dataset and designed a deep learning model named HR-CelestialNet for classifying images of the galaxy and NSC. HR-CelestialNet achieved an accuracy of 89.09% on the testing set, outperforming models such as AlexNet, VGGNet and ResNet, while demonstrating faster recognition speeds. Furthermore, we investigated the factors influencing CSST image quality and evaluated the generalization ability of HR-CelestialNet on the blurry image dataset, demonstrating its robustness to low image quality. The proposed method can enable real-time identification of celestial images during CSST survey mission.


PolarRec: Radio Interferometric Data Reconstruction with Polar Coordinate Representation

arXiv.org Artificial Intelligence

In radio astronomy, visibility data, which are measurements of wave signals from radio telescopes, are transformed into images for observation of distant celestial objects. However, these resultant images usually contain both real sources and artifacts, due to signal sparsity and other factors. One way to obtain cleaner images is to reconstruct samples into dense forms before imaging. Unfortunately, existing reconstruction methods often miss some components of visibility in frequency domain, so blurred object edges and persistent artifacts remain in the images. Furthermore, the computation overhead is high on irregular visibility samples due to the data skew. To address these problems, we propose PolarRec, a transformer-encoder-conditioned reconstruction pipeline with visibility samples converted into the polar coordinate representation. This representation matches the way in which radio telescopes observe a celestial area as the Earth rotates. As a result, visibility samples distribute in the polar system more uniformly than in the Cartesian space. Therefore, we propose to use radial distance in the loss function, to help reconstruct complete visibility effectively. Also, we group visibility samples by their polar angles and propose a group-based encoding scheme to improve the efficiency. Our experiments demonstrate that PolarRec markedly improves imaging results by faithfully reconstructing all frequency components in the visibility domain while significantly reducing the computation cost in visibility data encoding. We believe this high-quality and high-efficiency imaging of PolarRec will better facilitate astronomers to conduct their research.


Robust Network Slicing: Multi-Agent Policies, Adversarial Attacks, and Defensive Strategies

arXiv.org Artificial Intelligence

In this paper, we present a multi-agent deep reinforcement learning (deep RL) framework for network slicing in a dynamic environment with multiple base stations and multiple users. In particular, we propose a novel deep RL framework with multiple actors and centralized critic (MACC) in which actors are implemented as pointer networks to fit the varying dimension of input. We evaluate the performance of the proposed deep RL algorithm via simulations to demonstrate its effectiveness. Subsequently, we develop a deep RL based jammer with limited prior information and limited power budget. The goal of the jammer is to minimize the transmission rates achieved with network slicing and thus degrade the network slicing agents' performance. We design a jammer with both listening and jamming phases and address jamming location optimization as well as jamming channel optimization via deep RL. We evaluate the jammer at the optimized location, generating interference attacks in the optimized set of channels by switching between the jamming phase and listening phase. We show that the proposed jammer can significantly reduce the victims' performance without direct feedback or prior knowledge on the network slicing policies. Finally, we devise a Nash-equilibrium-supervised policy ensemble mixed strategy profile for network slicing (as a defensive measure) and jamming. We evaluate the performance of the proposed policy ensemble algorithm by applying on the network slicing agents and the jammer agent in simulations to show its effectiveness.


Dual Prompt Tuning for Domain-Aware Federated Learning

arXiv.org Artificial Intelligence

Federated learning is a distributed machine learning paradigm that allows multiple clients to collaboratively train a shared model with their local data. Nonetheless, conventional federated learning algorithms often struggle to generalize well due to the ubiquitous domain shift across clients. In this work, we consider a challenging yet realistic federated learning scenario where the training data of each client originates from different domains. We address the challenges of domain shift by leveraging the technique of prompt learning, and propose a novel method called Federated Dual Prompt Tuning (Fed-DPT). Specifically, Fed-DPT employs a pre-trained vision-language model and then applies both visual and textual prompt tuning to facilitate domain adaptation over decentralized data. Extensive experiments of Fed-DPT demonstrate its significant effectiveness in domain-aware federated learning. With a pre-trained CLIP model (ViT-Base as image encoder), the proposed Fed-DPT attains 68.4% average accuracy over six domains in the DomainNet dataset, which improves the original CLIP by a large margin of 14.8%.