Goto

Collaborating Authors

 Wang, Dongjie


Generative AI in Transportation Planning: A Survey

arXiv.org Artificial Intelligence

The integration of generative artificial intelligence (GenAI) into transportation planning has the potential to revolutionize tasks such as demand forecasting, infrastructure design, policy evaluation, and traffic simulation. However, there is a critical need for a systematic framework to guide the adoption of GenAI in this interdisciplinary domain. In this survey, we, a multidisciplinary team of researchers spanning computer science and transportation engineering, present the first comprehensive framework for leveraging GenAI in transportation planning. Specifically, we introduce a new taxonomy that categorizes existing applications and methodologies into two perspectives: transportation planning tasks and computational techniques. From the transportation planning perspective, we examine the role of GenAI in automating descriptive, predictive, generative, simulation, and explainable tasks to enhance mobility systems. From the computational perspective, we detail advancements in data preparation, domain-specific fine-tuning, and inference strategies, such as retrieval-augmented generation and zero-shot learning tailored to transportation applications. Additionally, we address critical challenges, including data scarcity, explainability, bias mitigation, and the development of domain-specific evaluation frameworks that align with transportation goals like sustainability, equity, and system efficiency. This survey aims to bridge the gap between traditional transportation planning methodologies and modern AI techniques, fostering collaboration and innovation. By addressing these challenges and opportunities, we seek to inspire future research that ensures ethical, equitable, and impactful use of generative AI in transportation planning.


A Survey on Data-Centric AI: Tabular Learning from Reinforcement Learning and Generative AI Perspective

arXiv.org Artificial Intelligence

Tabular data is one of the most widely used data formats across various domains such as bioinformatics, healthcare, and marketing. As artificial intelligence moves towards a data-centric perspective, improving data quality is essential for enhancing model performance in tabular data-driven applications. This survey focuses on data-driven tabular data optimization, specifically exploring reinforcement learning (RL) and generative approaches for feature selection and feature generation as fundamental techniques for refining data spaces. Feature selection aims to identify and retain the most informative attributes, while feature generation constructs new features to better capture complex data patterns. We systematically review existing generative methods for tabular data engineering, analyzing their latest advancements, real-world applications, and respective strengths and limitations. This survey emphasizes how RL-based and generative techniques contribute to the automation and intelligence of feature engineering. Finally, we summarize the existing challenges and discuss future research directions, aiming to provide insights that drive continued innovation in this field.


LEKA:LLM-Enhanced Knowledge Augmentation

arXiv.org Artificial Intelligence

Humans excel in analogical learning and knowledge transfer and, more importantly, possess a unique understanding of identifying appropriate sources of knowledge. From a model's perspective, this presents an interesting challenge. If models could autonomously retrieve knowledge useful for transfer or decision-making to solve problems, they would transition from passively acquiring to actively accessing and learning from knowledge. However, filling models with knowledge is relatively straightforward -- it simply requires more training and accessible knowledge bases. The more complex task is teaching models about which knowledge can be analogized and transferred. Therefore, we design a knowledge augmentation method LEKA for knowledge transfer that actively searches for suitable knowledge sources that can enrich the target domain's knowledge. This LEKA method extracts key information from textual information from the target domain, retrieves pertinent data from external data libraries, and harmonizes retrieved data with the target domain data in feature space and marginal probability measures. We validate the effectiveness of our approach through extensive experiments across various domains and demonstrate significant improvements over traditional methods in reducing computational costs, automating data alignment, and optimizing transfer learning outcomes.


Causally-Aware Unsupervised Feature Selection Learning

arXiv.org Artificial Intelligence

Unsupervised feature selection (UFS) has recently gained attention for its effectiveness in processing unlabeled high-dimensional data. However, existing methods overlook the intrinsic causal mechanisms within the data, resulting in the selection of irrelevant features and poor interpretability. Additionally, previous graph-based methods fail to account for the differing impacts of non-causal and causal features in constructing the similarity graph, which leads to false links in the generated graph. To address these issues, a novel UFS method, called Causally-Aware UnSupErvised Feature Selection learning (CAUSE-FS), is proposed. CAUSE-FS introduces a novel causal regularizer that reweights samples to balance the confounding distribution of each treatment feature. This regularizer is subsequently integrated into a generalized unsupervised spectral regression model to mitigate spurious associations between features and clustering labels, thus achieving causal feature selection. Furthermore, CAUSE-FS employs causality-guided hierarchical clustering to partition features with varying causal contributions into multiple granularities. By integrating similarity graphs learned adaptively at different granularities, CAUSE-FS increases the importance of causal features when constructing the fused similarity graph to capture the reliable local structure of data. Extensive experimental results demonstrate the superiority of CAUSE-FS over state-of-the-art methods, with its interpretability further validated through feature visualization.


Iterative Feature Space Optimization through Incremental Adaptive Evaluation

arXiv.org Artificial Intelligence

Iterative feature space optimization involves systematically evaluating and adjusting the feature space to improve downstream task performance. However, existing works suffer from three key limitations:1) overlooking differences among data samples leads to evaluation bias; 2) tailoring feature spaces to specific machine learning models results in overfitting and poor generalization; 3) requiring the evaluator to be retrained from scratch during each optimization iteration significantly reduces the overall efficiency of the optimization process. To bridge these gaps, we propose a gEneralized Adaptive feature Space Evaluator (EASE) to efficiently produce optimal and generalized feature spaces. This framework consists of two key components: Feature-Sample Subspace Generator and Contextual Attention Evaluator. The first component aims to decouple the information distribution within the feature space to mitigate evaluation bias. To achieve this, we first identify features most relevant to prediction tasks and samples most challenging for evaluation based on feedback from the subsequent evaluator. This decoupling strategy makes the evaluator consistently target the most challenging aspects of the feature space. The second component intends to incrementally capture evolving patterns of the feature space for efficient evaluation. We propose a weighted-sharing multi-head attention mechanism to encode key characteristics of the feature space into an embedding vector for evaluation. Moreover, the evaluator is updated incrementally, retaining prior evaluation knowledge while incorporating new insights, as consecutive feature spaces during the optimization process share partial information. Extensive experiments on fourteen real-world datasets demonstrate the effectiveness of the proposed framework. Our code and data are publicly available.


Towards Data-Centric AI: A Comprehensive Survey of Traditional, Reinforcement, and Generative Approaches for Tabular Data Transformation

arXiv.org Artificial Intelligence

Tabular data is one of the most widely used formats across industries, driving critical applications in areas such as finance, healthcare, and marketing. In the era of data-centric AI, improving data quality and representation has become essential for enhancing model performance, particularly in applications centered around tabular data. This survey examines the key aspects of tabular data-centric AI, emphasizing feature selection and feature generation as essential techniques for data space refinement. We provide a systematic review of feature selection methods, which identify and retain the most relevant data attributes, and feature generation approaches, which create new features to simplify the capture of complex data patterns. This survey offers a comprehensive overview of current methodologies through an analysis of recent advancements, practical applications, and the strengths and limitations of these techniques. Finally, we outline open challenges and suggest future perspectives to inspire continued innovation in this field.


CONDEN-FI: Consistency and Diversity Learning-based Multi-View Unsupervised Feature and In-stance Co-Selection

arXiv.org Artificial Intelligence

The objective of multi-view unsupervised feature and instance co-selection is to simultaneously iden-tify the most representative features and samples from multi-view unlabeled data, which aids in mit-igating the curse of dimensionality and reducing instance size to improve the performance of down-stream tasks. However, existing methods treat feature selection and instance selection as two separate processes, failing to leverage the potential interactions between the feature and instance spaces. Addi-tionally, previous co-selection methods for multi-view data require concatenating different views, which overlooks the consistent information among them. In this paper, we propose a CONsistency and DivErsity learNing-based multi-view unsupervised Feature and Instance co-selection (CONDEN-FI) to address the above-mentioned issues. Specifically, CONDEN-FI reconstructs mul-ti-view data from both the sample and feature spaces to learn representations that are consistent across views and specific to each view, enabling the simultaneous selection of the most important features and instances. Moreover, CONDEN-FI adaptively learns a view-consensus similarity graph to help select both dissimilar and similar samples in the reconstructed data space, leading to a more diverse selection of instances. An efficient algorithm is developed to solve the resultant optimization problem, and the comprehensive experimental results on real-world datasets demonstrate that CONDEN-FI is effective compared to state-of-the-art methods.


Reinforcement Feature Transformation for Polymer Property Performance Prediction

arXiv.org Artificial Intelligence

Polymer property performance prediction aims to forecast specific features or attributes of polymers, which has become an efficient approach to measuring their performance. However, existing machine learning models face challenges in effectively learning polymer representations due to low-quality polymer datasets, which consequently impact their overall performance. This study focuses on improving polymer property performance prediction tasks by reconstructing an optimal and explainable descriptor representation space. Nevertheless, prior research such as feature engineering and representation learning can only partially solve this task since they are either labor-incentive or unexplainable. This raises two issues: 1) automatic transformation and 2) explainable enhancement. To tackle these issues, we propose our unique Traceable Group-wise Reinforcement Generation Perspective. Specifically, we redefine the reconstruction of the representation space into an interactive process, combining nested generation and selection. Generation creates meaningful descriptors, and selection eliminates redundancies to control descriptor sizes. Our approach employs cascading reinforcement learning with three Markov Decision Processes, automating descriptor and operation selection, and descriptor crossing. We utilize a group-wise generation strategy to explore and enhance reward signals for cascading agents. Ultimately, we conduct experiments to indicate the effectiveness of our proposed framework.


Revolutionizing Biomarker Discovery: Leveraging Generative AI for Bio-Knowledge-Embedded Continuous Space Exploration

arXiv.org Artificial Intelligence

Biomarker discovery is vital in advancing personalized medicine, offering insights into disease diagnosis, prognosis, and therapeutic efficacy. Traditionally, the identification and validation of biomarkers heavily depend on extensive experiments and statistical analyses. These approaches are time-consuming, demand extensive domain expertise, and are constrained by the complexity of biological systems. These limitations motivate us to ask: Can we automatically identify the effective biomarker subset without substantial human efforts? Inspired by the success of generative AI, we think that the intricate knowledge of biomarker identification can be compressed into a continuous embedding space, thus enhancing the search for better biomarkers. Thus, we propose a new biomarker identification framework with two important modules:1) training data preparation and 2) embedding-optimization-generation. The first module uses a multi-agent system to automatically collect pairs of biomarker subsets and their corresponding prediction accuracy as training data. These data establish a strong knowledge base for biomarker identification. The second module employs an encoder-evaluator-decoder learning paradigm to compress the knowledge of the collected data into a continuous space. Then, it utilizes gradient-based search techniques and autoregressive-based reconstruction to efficiently identify the optimal subset of biomarkers. Finally, we conduct extensive experiments on three real-world datasets to show the efficiency, robustness, and effectiveness of our method.


GUME: Graphs and User Modalities Enhancement for Long-Tail Multimodal Recommendation

arXiv.org Artificial Intelligence

Multimodal recommendation systems (MMRS) have received considerable attention from the research community due to their ability to jointly utilize information from user behavior and product images and text. Previous research has two main issues. First, many long-tail items in recommendation systems have limited interaction data, making it difficult to learn comprehensive and informative representations. However, past MMRS studies have overlooked this issue. Secondly, users' modality preferences are crucial to their behavior. However, previous research has primarily focused on learning item modality representations, while user modality representations have remained relatively simplistic.To address these challenges, we propose a novel Graphs and User Modalities Enhancement (GUME) for long-tail multimodal recommendation. Specifically, we first enhance the user-item graph using multimodal similarity between items. This improves the connectivity of long-tail items and helps them learn high-quality representations through graph propagation. Then, we construct two types of user modalities: explicit interaction features and extended interest features. By using the user modality enhancement strategy to maximize mutual information between these two features, we improve the generalization ability of user modality representations. Additionally, we design an alignment strategy for modality data to remove noise from both internal and external perspectives. Extensive experiments on four publicly available datasets demonstrate the effectiveness of our approach.