Goto

Collaborating Authors

 Wang, Di


Editable Concept Bottleneck Models

arXiv.org Artificial Intelligence

Concept Bottleneck Models (CBMs) have garnered much attention for their ability to elucidate the prediction process through a human-understandable concept layer. However, most previous studies focused on cases where the data, including concepts, are clean. In many scenarios, we always need to remove/insert some training data or new concepts from trained CBMs due to different reasons, such as privacy concerns, data mislabelling, spurious concepts, and concept annotation errors. Thus, the challenge of deriving efficient editable CBMs without retraining from scratch persists, particularly in large-scale applications. To address these challenges, we propose Editable Concept Bottleneck Models (ECBMs). Specifically, ECBMs support three different levels of data removal: concept-label-level, concept-level, and data-level. ECBMs enjoy mathematically rigorous closed-form approximations derived from influence functions that obviate the need for re-training. Experimental results demonstrate the efficiency and effectiveness of our ECBMs, affirming their adaptability within the realm of CBMs.


Towards Lifecycle Unlearning Commitment Management: Measuring Sample-level Approximate Unlearning Completeness

arXiv.org Artificial Intelligence

By adopting a more flexible definition of unlearning and adjusting the model distribution to simulate training without the targeted data, approximate machine unlearning provides a less resource-demanding alternative to the more laborious exact unlearning methods. Yet, the unlearning completeness of target samples-even when the approximate algorithms are executed faithfully without external threats-remains largely unexamined, raising questions about those approximate algorithms' ability to fulfill their commitment of unlearning during the lifecycle. In this paper, we introduce the task of Lifecycle Unlearning Commitment Management (LUCM) for approximate unlearning and outline its primary challenges. We propose an efficient metric designed to assess the sample-level unlearning completeness. Our empirical results demonstrate its superiority over membership inference techniques in two key areas: the strong correlation of its measurements with unlearning completeness across various unlearning tasks, and its computational efficiency, making it suitable for real-time applications. Additionally, we show that this metric is able to serve as a tool for monitoring unlearning anomalies throughout the unlearning lifecycle, including both under-unlearning and over-unlearning. We apply this metric to evaluate the unlearning commitments of current approximate algorithms. Our analysis, conducted across multiple unlearning benchmarks, reveals that these algorithms inconsistently fulfill their unlearning commitments due to two main issues: 1) unlearning new data can significantly affect the unlearning utility of previously requested data, and 2) approximate algorithms fail to ensure equitable unlearning utility across different groups. These insights emphasize the crucial importance of LUCM throughout the unlearning lifecycle. We will soon open-source our newly developed benchmark.


MONAL: Model Autophagy Analysis for Modeling Human-AI Interactions

arXiv.org Artificial Intelligence

The increasing significance of large models and their multi-modal variants in societal information processing has ignited debates on social safety and ethics. However, there exists a paucity of comprehensive analysis for: (i) the interactions between human and artificial intelligence systems, and (ii) understanding and addressing the associated limitations. To bridge this gap, we propose Model Autophagy Analysis (MONAL) for large models' self-consumption explanation. MONAL employs two distinct autophagous loops (referred to as ``self-consumption loops'') to elucidate the suppression of human-generated information in the exchange between human and AI systems. Through comprehensive experiments on diverse datasets, we evaluate the capacities of generated models as both creators and disseminators of information. Our key findings reveal (i) A progressive prevalence of model-generated synthetic information over time within training datasets compared to human-generated information; (ii) The discernible tendency of large models, when acting as information transmitters across multiple iterations, to selectively modify or prioritize specific contents; and (iii) The potential for a reduction in the diversity of socially or human-generated information, leading to bottlenecks in the performance enhancement of large models and confining them to local optima.


Multi-hop Question Answering under Temporal Knowledge Editing

arXiv.org Artificial Intelligence

Multi-hop question answering (MQA) under knowledge editing (KE) has garnered significant attention in the era of large language models. However, existing models for MQA under KE exhibit poor performance when dealing with questions containing explicit temporal contexts. To address this limitation, we propose a novel framework, namely TEMPoral knowLEdge augmented Multi-hop Question Answering (TEMPLE-MQA). Unlike previous methods, TEMPLE-MQA first constructs a time-aware graph (TAG) to store edit knowledge in a structured manner. Then, through our proposed inference path, structural retrieval, and joint reasoning stages, TEMPLE-MQA effectively discerns temporal contexts within the question query. Experiments on benchmark datasets demonstrate that TEMPLE-MQA significantly outperforms baseline models. Additionally, we contribute a new dataset, namely TKEMQA, which serves as the inaugural benchmark tailored specifically for MQA with temporal scopes.


Dialectical Alignment: Resolving the Tension of 3H and Security Threats of LLMs

arXiv.org Artificial Intelligence

With the rise of large language models (LLMs), ensuring they embody the principles of being helpful, honest, and harmless (3H), known as Human Alignment, becomes crucial. While existing alignment methods like RLHF, DPO, etc., effectively fine-tune LLMs to match preferences in the preference dataset, they often lead LLMs to highly receptive human input and external evidence, even when this information is poisoned. This leads to a tendency for LLMs to be Adaptive Chameleons when external evidence conflicts with their parametric memory. This exacerbates the risk of LLM being attacked by external poisoned data, which poses a significant security risk to LLM system applications such as Retrieval-augmented generation (RAG). To address the challenge, we propose a novel framework: Dialectical Alignment (DA), which (1) utilizes AI feedback to identify optimal strategies for LLMs to navigate inter-context conflicts and context-memory conflicts with different external evidence in context window (i.e., different ratios of poisoned factual contexts); (2) constructs the SFT dataset as well as the preference dataset based on the AI feedback and strategies above; (3) uses the above datasets for LLM alignment to defense poisoned context attack while preserving the effectiveness of in-context knowledge editing. Our experiments show that the dialectical alignment model improves poisoned data attack defense by 20 and does not require any additional prompt engineering or prior declaration of ``you may be attacked`` to the LLMs' context window.


PROMPT-SAW: Leveraging Relation-Aware Graphs for Textual Prompt Compression

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown exceptional abilities for multiple different natural language processing tasks. While prompting is a crucial tool for LLM inference, we observe that there is a significant cost associated with exceedingly lengthy prompts. Existing attempts to compress lengthy prompts lead to sub-standard results in terms of readability and interpretability of the compressed prompt, with a detrimental impact on prompt utility. To address this, we propose PROMPT-SAW: Prompt compresSion via Relation AWare graphs, an effective strategy for prompt compression over task-agnostic and task-aware prompts. PROMPT-SAW uses the prompt's textual information to build a graph, later extracts key information elements in the graph to come up with the compressed prompt. We also propose GSM8K-AUG, i.e., an extended version of the existing GSM8k benchmark for task-agnostic prompts in order to provide a comprehensive evaluation platform. Experimental evaluation using benchmark datasets shows that prompts compressed by PROMPT-SAW are not only better in terms of readability, but they also outperform the best-performing baseline models by up to 14.3 and 13.7 respectively for task-aware and task-agnostic settings while compressing the original prompt text by 33.0 and 56.7.


Communication Efficient and Provable Federated Unlearning

arXiv.org Artificial Intelligence

We study federated unlearning, a novel problem to eliminate the impact of specific clients or data points on the global model learned via federated learning (FL). This problem is driven by the right to be forgotten and the privacy challenges in FL. We introduce a new framework for exact federated unlearning that meets two essential criteria: \textit{communication efficiency} and \textit{exact unlearning provability}. To our knowledge, this is the first work to tackle both aspects coherently. We start by giving a rigorous definition of \textit{exact} federated unlearning, which guarantees that the unlearned model is statistically indistinguishable from the one trained without the deleted data. We then pinpoint the key property that enables fast exact federated unlearning: total variation (TV) stability, which measures the sensitivity of the model parameters to slight changes in the dataset. Leveraging this insight, we develop a TV-stable FL algorithm called \texttt{FATS}, which modifies the classical \texttt{\underline{F}ed\underline{A}vg} algorithm for \underline{T}V \underline{S}tability and employs local SGD with periodic averaging to lower the communication round. We also design efficient unlearning algorithms for \texttt{FATS} under two settings: client-level and sample-level unlearning. We provide theoretical guarantees for our learning and unlearning algorithms, proving that they achieve exact federated unlearning with reasonable convergence rates for both the original and unlearned models. We empirically validate our framework on 6 benchmark datasets, and show its superiority over state-of-the-art methods in terms of accuracy, communication cost, computation cost, and unlearning efficacy.


Antonym vs Synonym Distinction using InterlaCed Encoder NETworks (ICE-NET)

arXiv.org Artificial Intelligence

Antonyms vs synonyms distinction is a core challenge in lexico-semantic analysis and automated lexical resource construction. These pairs share a similar distributional context which makes it harder to distinguish them. Leading research in this regard attempts to capture the properties of the relation pairs, i.e., symmetry, transitivity, and trans-transitivity. However, the inability of existing research to appropriately model the relation-specific properties limits their end performance. In this paper, we propose InterlaCed Encoder NETworks (i.e., ICE-NET) for antonym vs synonym distinction, that aim to capture and model the relation-specific properties of the antonyms and synonyms pairs in order to perform the classification task in a performance-enhanced manner. Experimental evaluation using the benchmark datasets shows that ICE-NET outperforms the existing research by a relative score of upto 1.8% in F1-measure. We release the codes for ICE-NET at https://github.com/asif6827/ICENET.


Distilling Autoregressive Models to Obtain High-Performance Non-Autoregressive Solvers for Vehicle Routing Problems with Faster Inference Speed

arXiv.org Artificial Intelligence

Neural construction models have shown promising performance for Vehicle Routing Problems (VRPs) by adopting either the Autoregressive (AR) or Non-Autoregressive (NAR) learning approach. While AR models produce high-quality solutions, they generally have a high inference latency due to their sequential generation nature. Conversely, NAR models generate solutions in parallel with a low inference latency but generally exhibit inferior performance. In this paper, we propose a generic Guided Non-Autoregressive Knowledge Distillation (GNARKD) method to obtain high-performance NAR models having a low inference latency. GNARKD removes the constraint of sequential generation in AR models while preserving the learned pivotal components in the network architecture to obtain the corresponding NAR models through knowledge distillation. We evaluate GNARKD by applying it to three widely adopted AR models to obtain NAR VRP solvers for both synthesized and real-world instances. The experimental results demonstrate that GNARKD significantly reduces the inference time (4-5 times faster) with acceptable performance drop (2-3\%). To the best of our knowledge, this study is first-of-its-kind to obtain NAR VRP solvers from AR ones through knowledge distillation.


Weighted Spectral Filters for Kernel Interpolation on Spheres: Estimates of Prediction Accuracy for Noisy Data

arXiv.org Artificial Intelligence

Spherical radial-basis-based kernel interpolation abounds in image sciences including geophysical image reconstruction, climate trends description and image rendering due to its excellent spatial localization property and perfect approximation performance. However, in dealing with noisy data, kernel interpolation frequently behaves not so well due to the large condition number of the kernel matrix and instability of the interpolation process. In this paper, we introduce a weighted spectral filter approach to reduce the condition number of the kernel matrix and then stabilize kernel interpolation. The main building blocks of the proposed method are the well developed spherical positive quadrature rules and high-pass spectral filters. Using a recently developed integral operator approach for spherical data analysis, we theoretically demonstrate that the proposed weighted spectral filter approach succeeds in breaking through the bottleneck of kernel interpolation, especially in fitting noisy data. We provide optimal approximation rates of the new method to show that our approach does not compromise the predicting accuracy. Furthermore, we conduct both toy simulations and two real-world data experiments with synthetically added noise in geophysical image reconstruction and climate image processing to verify our theoretical assertions and show the feasibility of the weighted spectral filter approach.