Goto

Collaborating Authors

 Wang, Chunmei


Learning Epidemiological Dynamics via the Finite Expression Method

arXiv.org Artificial Intelligence

Modeling and forecasting the spread of infectious diseases is essential for effective public health decision-making. Traditional epidemiological models rely on expert-defined frameworks to describe complex dynamics, while neural networks, despite their predictive power, often lack interpretability due to their ``black-box" nature. This paper introduces the Finite Expression Method, a symbolic learning framework that leverages reinforcement learning to derive explicit mathematical expressions for epidemiological dynamics. Through numerical experiments on both synthetic and real-world datasets, FEX demonstrates high accuracy in modeling and predicting disease spread, while uncovering explicit relationships among epidemiological variables. These results highlight FEX as a powerful tool for infectious disease modeling, combining interpretability with strong predictive performance to support practical applications in public health.


Deep Operator Learning Lessens the Curse of Dimensionality for PDEs

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) have achieved remarkable success in numerous domains, and their application to PDE-related problems has been rapidly advancing. This paper provides an estimate for the generalization error of learning Lipschitz operators over Banach spaces using DNNs with applications to various PDE solution operators. The goal is to specify DNN width, depth, and the number of training samples needed to guarantee a certain testing error. Under mild assumptions on data distributions or operator structures, our analysis shows that deep operator learning can have a relaxed dependence on the discretization resolution of PDEs and, hence, lessen the curse of dimensionality in many PDE-related problems including elliptic equations, parabolic equations, and Burgers equations. Our results are also applied to give insights about discretization-invariance in operator learning.


Finite Expression Methods for Discovering Physical Laws from Data

arXiv.org Artificial Intelligence

Nonlinear dynamics is a pervasive phenomenon observed in scientific and engineering disciplines. However, the task of deriving analytical expressions to describe nonlinear dynamics from limited data remains challenging. In this paper, we shall present a novel deep symbolic learning method called the "finite expression method" (FEX) to discover governing equations within a function space containing a finite set of analytic expressions, based on observed dynamic data. The key concept is to employ FEX to generate analytical expressions of the governing equations by learning the derivatives of partial differential equation (PDE) solutions through convolutions. Our numerical results demonstrate that our FEX surpasses other existing methods (such as PDE-Net, SINDy, GP, and SPL) in terms of numerical performance across a range of problems, including time-dependent PDE problems and nonlinear dynamical systems with time-varying coefficients. Moreover, the results highlight FEX's flexibility and expressive power in accurately approximating symbolic governing equations.


Friedrichs Learning: Weak Solutions of Partial Differential Equations via Deep Learning

arXiv.org Artificial Intelligence

This paper proposes Friedrichs learning as a novel deep learning methodology that can learn the weak solutions of PDEs via a minimax formulation, which transforms the PDE problem into a minimax optimization problem to identify weak solutions. The name "Friedrichs learning" is to highlight the close relation between our learning strategy and Friedrichs theory on symmetric systems of PDEs. The weak solution and the test function in the weak formulation are parameterized as deep neural networks in a mesh-free manner, which are alternately updated to approach the optimal solution networks approximating the weak solution and the optimal test function, respectively. Extensive numerical results indicate that our mesh-free Friedrichs learning method can provide reasonably good solutions for a wide range of PDEs defined on regular and irregular domains, where conventional numerical methods such as finite difference methods and finite element methods may be tedious or difficult to be applied, especially for those with discontinuous solutions in high-dimensional problems.