Wang, Chu
E2Former: A Linear-time Efficient and Equivariant Transformer for Scalable Molecular Modeling
Li, Yunyang, Huang, Lin, Ding, Zhihao, Wang, Chu, Wei, Xinran, Yang, Han, Wang, Zun, Liu, Chang, Shi, Yu, Jin, Peiran, Zhang, Jia, Gerstein, Mark, Qin, Tao
Equivariant Graph Neural Networks (EGNNs) have demonstrated significant success in modeling microscale systems, including those in chemistry, biology and materials science. However, EGNNs face substantial computational challenges due to the high cost of constructing edge features via spherical tensor products, making them impractical for large-scale systems. To address this limitation, we introduce E2Former, an equivariant and efficient transformer architecture that incorporates the Wigner $6j$ convolution (Wigner $6j$ Conv). By shifting the computational burden from edges to nodes, the Wigner $6j$ Conv reduces the complexity from $O(|\mathcal{E}|)$ to $ O(| \mathcal{V}|)$ while preserving both the model's expressive power and rotational equivariance. We show that this approach achieves a 7x-30x speedup compared to conventional $\mathrm{SO}(3)$ convolutions. Furthermore, our empirical results demonstrate that the derived E2Former mitigates the computational challenges of existing approaches without compromising the ability to capture detailed geometric information. This development could suggest a promising direction for scalable and efficient molecular modeling.
JailPO: A Novel Black-box Jailbreak Framework via Preference Optimization against Aligned LLMs
Li, Hongyi, Ye, Jiawei, Wu, Jie, Yan, Tianjie, Wang, Chu, Li, Zhixin
Large Language Models (LLMs) aligned with human feedback have recently garnered significant attention. However, it remains vulnerable to jailbreak attacks, where adversaries manipulate prompts to induce harmful outputs. Exploring jailbreak attacks enables us to investigate the vulnerabilities of LLMs and further guides us in enhancing their security. Unfortunately, existing techniques mainly rely on handcrafted templates or generated-based optimization, posing challenges in scalability, efficiency and universality. To address these issues, we present JailPO, a novel black-box jailbreak framework to examine LLM alignment. For scalability and universality, JailPO meticulously trains attack models to automatically generate covert jailbreak prompts. Furthermore, we introduce a preference optimization-based attack method to enhance the jailbreak effectiveness, thereby improving efficiency. To analyze model vulnerabilities, we provide three flexible jailbreak patterns. Extensive experiments demonstrate that JailPO not only automates the attack process while maintaining effectiveness but also exhibits superior performance in efficiency, universality, and robustness against defenses compared to baselines. Additionally, our analysis of the three JailPO patterns reveals that attacks based on complex templates exhibit higher attack strength, whereas covert question transformations elicit riskier responses and are more likely to bypass defense mechanisms.
Domain Adaptation-based Edge Computing for Cross-Conditions Fault Diagnosis
Wang, Yanzhi, Wang, Chu, Wu, Jinhong, Yu, Ziyang, Zhou, Qi
Fault diagnosis technology supports the healthy operation of mechanical equipment. However, the variations conditions during the operation of mechanical equipment lead to significant disparities in data distribution, posing challenges to fault diagnosis. Furthermore, when deploying applications, traditional methods often encounter issues such as latency and data security. Therefore, conducting fault diagnosis and deploying application methods under cross-operating conditions holds significant value. This paper proposes a domain adaptation-based lightweight fault diagnosis framework for edge computing scenarios. Incorporating the local maximum mean discrepancy into knowledge transfer aligns the feature distributions of different domains in a high-dimensional feature space, to discover a common feature space across domains. The acquired fault diagnosis expertise from the cloud-model is transferred to the lightweight edge-model using adaptation knowledge transfer methods. While ensuring real-time diagnostic capabilities, accurate fault diagnosis is achieved across working conditions. We conducted validation experiments on the NVIDIA Jetson Xavier NX kit. In terms of diagnostic performance, the proposed method significantly improved diagnostic accuracy, with average increases of 34.44% and 17.33% compared to the comparison method, respectively. Regarding lightweight effectiveness, proposed method achieved an average inference speed increase of 80.47%. Additionally, compared to the cloud-model, the parameter count of the edge-model decreased by 96.37%, while the Flops decreased by 83.08%.
Large Language Model Enhanced Machine Learning Estimators for Classification
Wu, Yuhang, Wang, Yingfei, Wang, Chu, Zheng, Zeyu
Pre-trained large language models (LLM) have emerged as a powerful tool for simulating various scenarios and generating output given specific instructions and multimodal input. In this work, we analyze the specific use of LLM to enhance a classical supervised machine learning method for classification problems. We propose a few approaches to integrate LLM into a classical machine learning estimator to further enhance the prediction performance. We examine the performance of the proposed approaches through both standard supervised learning binary classification tasks, and a transfer learning task where the test data observe distribution changes compared to the training data. Numerical experiments using four publicly available datasets are conducted and suggest that using LLM to enhance classical machine learning estimators can provide significant improvement on prediction performance.
Dynamic Gaussian Graph Operator: Learning parametric partial differential equations in arbitrary discrete mechanics problems
Wang, Chu, Wu, Jinhong, Wang, Yanzhi, Zha, Zhijian, Zhou, Qi
Deep learning methods have access to be employed for solving physical systems governed by parametric partial differential equations (PDEs) due to massive scientific data. It has been refined to operator learning that focuses on learning non-linear mapping between infinite-dimensional function spaces, offering interface from observations to solutions. However, state-of-the-art neural operators are limited to constant and uniform discretization, thereby leading to deficiency in generalization on arbitrary discretization schemes for computational domain. In this work, we propose a novel operator learning algorithm, referred to as Dynamic Gaussian Graph Operator (DGGO) that expands neural operators to learning parametric PDEs in arbitrary discrete mechanics problems. The Dynamic Gaussian Graph (DGG) kernel learns to map the observation vectors defined in general Euclidean space to metric vectors defined in high-dimensional uniform metric space. The DGG integral kernel is parameterized by Gaussian kernel weighted Riemann sum approximating and using dynamic message passing graph to depict the interrelation within the integral term. Fourier Neural Operator is selected to localize the metric vectors on spatial and frequency domains. Metric vectors are regarded as located on latent uniform domain, wherein spatial and spectral transformation offer highly regular constraints on solution space. The efficiency and robustness of DGGO are validated by applying it to solve numerical arbitrary discrete mechanics problems in comparison with mainstream neural operators. Ablation experiments are implemented to demonstrate the effectiveness of spatial transformation in the DGG kernel. The proposed method is utilized to forecast stress field of hyper-elastic material with geometrically variable void as engineering application.
MPIPN: A Multi Physics-Informed PointNet for solving parametric acoustic-structure systems
Wang, Chu, Wu, Jinhong, Wang, Yanzhi, Zha, Zhijian, Zhou, Qi
Machine learning is employed for solving physical systems governed by general nonlinear partial differential equations (PDEs). However, complex multi-physics systems such as acoustic-structure coupling are often described by a series of PDEs that incorporate variable physical quantities, which are referred to as parametric systems. There are lack of strategies for solving parametric systems governed by PDEs that involve explicit and implicit quantities. In this paper, a deep learning-based Multi Physics-Informed PointNet (MPIPN) is proposed for solving parametric acoustic-structure systems. First, the MPIPN induces an enhanced point-cloud architecture that encompasses explicit physical quantities and geometric features of computational domains. Then, the MPIPN extracts local and global features of the reconstructed point-cloud as parts of solving criteria of parametric systems, respectively. Besides, implicit physical quantities are embedded by encoding techniques as another part of solving criteria. Finally, all solving criteria that characterize parametric systems are amalgamated to form distinctive sequences as the input of the MPIPN, whose outputs are solutions of systems. The proposed framework is trained by adaptive physics-informed loss functions for corresponding computational domains. The framework is generalized to deal with new parametric conditions of systems. The effectiveness of the MPIPN is validated by applying it to solve steady parametric acoustic-structure coupling systems governed by the Helmholtz equations. An ablation experiment has been implemented to demonstrate the efficacy of physics-informed impact with a minority of supervised data. The proposed method yields reasonable precision across all computational domains under constant parametric conditions and changeable combinations of parametric conditions for acoustic-structure systems.
Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load
Wang, Chu, Dou, Manfeng, Li, Zhongliang, Outbib, Rachid, Zhao, Dongdong, Zuo, Jian, Wang, Yuanlin, Liang, Bin, Wang, Peng
Data-centric prognostics is beneficial to improve the reliability and safety of proton exchange membrane fuel cell (PEMFC). For the prognostics of PEMFC operating under dynamic load, the challenges come from extracting degradation features, improving prediction accuracy, expanding the prognostics horizon, and reducing computational cost. To address these issues, this work proposes a data-driven PEMFC prognostics approach, in which Hilbert-Huang transform is used to extract health indicator in dynamic operating conditions and symbolic-based gated recurrent unit model is used to enhance the accuracy of life prediction. Comparing with other state-of-the-art methods, the proposed data-driven prognostics approach provides a competitive prognostics horizon with lower computational cost. The prognostics performance shows consistency and generalizability under different failure threshold settings.
FAN: Focused Attention Networks
Wang, Chu, Samari, Babak, Kim, Vladimir, Chaudhuri, Siddhartha, Siddiqi, Kaleem
Attention networks show promise for both vision and language tasks, by emphasizing relationships between constituent elements through appropriate weighting functions. Such elements could be regions in an image output by a region proposal network, or words in a sentence, represented by word embedding. Thus far, however, the learning of attention weights has been driven solely by the minimization of task specific loss functions. We here introduce a method of learning attention weights to better emphasize informative pair-wise relations between entities. The key idea is to use a novel center-mass cross entropy loss, which can be applied in conjunction with the task specific ones. We then introduce a focused attention backbone to learn these attention weights for general tasks. We demonstrate that the focused attention module leads to a new state-of-the-art for the recovery of relations in a relationship proposal task. Our experiments show that it also boosts performance for diverse vision and language tasks, including object detection, scene categorization and document classification.
ProductNet: a Collection of High-Quality Datasets for Product Representation Learning
Wang, Chu, Tang, Lei, Lu, Yang, Bian, Shujun, Fujita, Hirohisa, Zhang, Da, Zhang, Zuohua, Wu, Yongning
ProductNet is a collection of high-quality product datasets for better product understanding. Motivated by ImageNet, ProductNet aims at supporting product representation learning by curating product datasets of high quality with properly chosen taxonomy. In this paper, the two goals of building high-quality product datasets and learning product representation support each other in an iterative fashion: the product embedding is obtained via a multi-modal deep neural network (master model) designed to leverage product image and catalog information; and in return, the embedding is utilized via active learning (local model) to vastly accelerate the annotation process. For the labeled data, the proposed master model yields high categorization accuracy (94.7% top-1 accuracy for 1240 classes), which can be used as search indices, partition keys, and input features for machine learning models. The product embedding, as well as the fined-tuned master model for a specific business task, can also be used for various transfer learning tasks.
Reference Product Search
Wang, Chu, Tang, Lei, Bian, Shujun, Zhang, Da, Zhang, Zuohua, Wu, Yongning
The reference products can be used as alternatives closely related to a product of customers' interest. In candidates to support downstream modeling tasks and business general, the solutions consist of two stages: a candidate product applications. The search method consists of product representation set is retrieved first, followed by a task-specific ranking model to learning and fingerprint-type vector searching. The product catalog generate the results. Often, research interests focus on a ranking information is transformed into a high-quality embedding of low model built to optimize towards such a business application, but a dimensions via a novel attention auto-encoder neural network, and suitable candidate product set is required to feed the ranking model the embedding is further coupled with a binary encoding vector for and it is not well discussed in the literature.