Goto

Collaborating Authors

 Wang, Benjie


A Compositional Atlas for Algebraic Circuits

arXiv.org Machine Learning

Circuits based on sum-product structure have become a ubiquitous representation to compactly encode knowledge, from Boolean functions to probability distributions. By imposing constraints on the structure of such circuits, certain inference queries become tractable, such as model counting and most probable configuration. Recent works have explored analyzing probabilistic and causal inference queries as compositions of basic operators to derive tractability conditions. In this paper, we take an algebraic perspective for compositional inference, and show that a large class of queries - including marginal MAP, probabilistic answer set programming inference, and causal backdoor adjustment - correspond to a combination of basic operators over semirings: aggregation, product, and elementwise mapping. Using this framework, we uncover simple and general sufficient conditions for tractable composition of these operators, in terms of circuit properties (e.g., marginal determinism, compatibility) and conditions on the elementwise mappings. Applying our analysis, we derive novel tractability conditions for many such compositional queries. Our results unify tractability conditions for existing problems on circuits, while providing a blueprint for analysing novel compositional inference queries.


Restructuring Tractable Probabilistic Circuits

arXiv.org Artificial Intelligence

Probabilistic circuits (PCs) is a unifying representation for probabilistic models that support tractable inference. Numerous applications of PCs like controllable text generation depend on the ability to efficiently multiply two circuits. Existing multiplication algorithms require that the circuits respect the same structure, i.e. variable scopes decomposes according to the same vtree. In this work, we propose and study the task of restructuring structured(-decomposable) PCs, that is, transforming a structured PC such that it conforms to a target vtree. We propose a generic approach for this problem and show that it leads to novel polynomial-time algorithms for multiplying circuits respecting different vtrees, as well as a practical depth-reduction algorithm that preserves structured decomposibility. Our work opens up new avenues for tractable PC inference, suggesting the possibility of training with less restrictive PC structures while enabling efficient inference by changing their structures at inference time.


Provable Preimage Under-Approximation for Neural Networks (Full Version)

arXiv.org Artificial Intelligence

Neural network verification mainly focuses on local robustness properties, which can be checked by bounding the image (set of outputs) of a given input set. However, often it is important to know whether a given property holds globally for the input domain, and if not then for what proportion of the input the property is true. To analyze such properties requires computing preimage abstractions of neural networks. In this work, we propose an efficient anytime algorithm for generating symbolic under-approximations of the preimage of any polyhedron output set for neural networks. Our algorithm combines a novel technique for cheaply computing polytope preimage under-approximations using linear relaxation, with a carefully-designed refinement procedure that iteratively partitions the input region into subregions using input and ReLU splitting in order to improve the approximation. Empirically, we validate the efficacy of our method across a range of domains, including a high-dimensional MNIST classification task beyond the reach of existing preimage computation methods. Finally, as use cases, we showcase the application to quantitative verification and robustness analysis. We present a sound and complete algorithm for the former, which exploits our disjoint union of polytopes representation to provide formal guarantees. For the latter, we find that our method can provide useful quantitative information even when standard verifiers cannot verify a robustness property.


Neural Structure Learning with Stochastic Differential Equations

arXiv.org Machine Learning

Time-series data are ubiquitous in the real world, often comprising a series of data points recorded at varying time intervals. Understanding the underlying structures between variables associated with temporal processes is of paramount importance for numerous real-world applications (Spirtes et al., 2000; Berzuini et al., 2012; Peters et al., 2017). Although randomised experiments are considered the gold standard for unveiling such relationships, they are frequently hindered by factors such as cost and ethical concerns. Structure learning seeks to infer hidden structures from purely observational data, offering a powerful approach for a wide array of applications (Bellot et al., 2021; Löwe et al., 2022; Runge, 2018; Tank et al., 2021; Pamfil et al., 2020; Gong et al., 2022). However, many existing structure learning methods for time series are inherently discrete, assuming that the underlying temporal processes are discretized in time and requiring uniform sampling intervals throughout the entire time range. Consequently, these models face two key limitations: (i) they may misrepresent the true underlying process when it is continuous in time, potentially leading to incorrect inferred relationships; and (ii) they struggle with handling irregular sampling intervals, which frequently arise in fields such as biology (Trapnell et al., 2014; Qiu et al., 2017; Qian et al., 2020) and climate science (Bracco et al., 2018; Raia, 2008). Although there exists a previous work (Bellot et al., 2021) that also tries to infer the underlying structure from the continuous-time perspective, its framework based on ordinary differential equations (ODE)


Compositional Probabilistic and Causal Inference using Tractable Circuit Models

arXiv.org Artificial Intelligence

Probabilistic circuits (PCs) are a class of tractable probabilistic models, which admit efficient inference routines depending on their structural properties. In this paper, we introduce md-vtrees, a novel structural formulation of (marginal) determinism in structured decomposable PCs, which generalizes previously proposed classes such as probabilistic sentential decision diagrams. Crucially, we show how mdvtrees can be used to derive tractability conditions and efficient algorithms for advanced inference queries expressed as arbitrary compositions of basic probabilistic operations, such as marginalization, multiplication and reciprocals, in a sound and generalizable manner. In particular, we derive the first polytime algorithms for causal inference queries such as backdoor adjustment on PCs. As a practical instantiation of the framework, we propose MDNets, a novel PC architecture using md-vtrees, and empirically demonstrate their application to causal inference.


Bayesian Network Models of Causal Interventions in Healthcare Decision Making: Literature Review and Software Evaluation

arXiv.org Artificial Intelligence

This report summarises the outcomes of a systematic literature search to identify Bayesian network models used to support decision making in healthcare. After describing the search methodology, the selected research papers are briefly reviewed, with the view to identify publicly available models and datasets that are well suited to analysis using the causal interventional analysis software tool developed in Wang B, Lyle C, Kwiatkowska M (2021). Finally, an experimental evaluation of applying the software on a selection of models is carried out and preliminary results are reported.


Tractable Uncertainty for Structure Learning

arXiv.org Machine Learning

Bayesian structure learning allows one to capture uncertainty over the causal directed acyclic graph (DAG) responsible for generating given data. In this work, we present Tractable Uncertainty for STructure learning (TRUST), a framework for approximate posterior inference that relies on probabilistic circuits as the representation of our posterior belief. In contrast to sample-based posterior approximations, our representation can capture a much richer space of DAGs, while also being able to tractably reason about the uncertainty through a range of useful inference queries. We empirically show how probabilistic circuits can be used as an augmented representation for structure learning methods, leading to improvement in both the quality of inferred structures and posterior uncertainty. Experimental results on conditional query answering further demonstrate the practical utility of the representational capacity of TRUST.


Provable Guarantees on the Robustness of Decision Rules to Causal Interventions

arXiv.org Artificial Intelligence

Robustness of decision rules to shifts in the data-generating process is crucial to the successful deployment of decision-making systems. Such shifts can be viewed as interventions on a causal graph, which capture (possibly hypothetical) changes in the data-generating process, whether due to natural reasons or by the action of an adversary. We consider causal Bayesian networks and formally define the interventional robustness problem, a novel model-based notion of robustness for decision functions that measures worst-case performance with respect to a set of interventions that denote changes to parameters and/or causal influences. By relying on a tractable representation of Bayesian networks as arithmetic circuits, we provide efficient algorithms for computing guaranteed upper and lower bounds on the interventional robustness probabilities. Experimental results demonstrate that the methods yield useful and interpretable bounds for a range of practical networks, paving the way towards provably causally robust decision-making systems.


Assessing Robustness of Text Classification through Maximal Safe Radius Computation

arXiv.org Machine Learning

Neural network NLP models are vulnerable to small modifications of the input that maintain the original meaning but result in a different prediction. In this paper, we focus on robustness of text classification against word substitutions, aiming to provide guarantees that the model prediction does not change if a word is replaced with a plausible alternative, such as a synonym. As a measure of robustness, we adopt the notion of the maximal safe radius for a given input text, which is the minimum distance in the embedding space to the decision boundary. Since computing the exact maximal safe radius is not feasible in practice, we instead approximate it by computing a lower and upper bound. For the upper bound computation, we employ Monte Carlo Tree Search in conjunction with syntactic filtering to analyse the effect of single and multiple word substitutions. The lower bound computation is achieved through an adaptation of the linear bounding techniques implemented in tools CNN-Cert and POPQORN, respectively for convolutional and recurrent network models. We evaluate the methods on sentiment analysis and news classification models for four datasets (IMDB, SST, AG News and NEWS) and a range of embeddings, and provide an analysis of robustness trends. We also apply our framework to interpretability analysis and compare it with LIME.