Vlassis, Nikos
Distributional Off-Policy Evaluation for Slate Recommendations
Chaudhari, Shreyas, Arbour, David, Theocharous, Georgios, Vlassis, Nikos
Recommendation strategies are typically evaluated by using previously logged data, employing off-policy evaluation methods to estimate their expected performance. However, for strategies that present users with slates of multiple items, the resulting combinatorial action space renders many of these methods impractical. Prior work has developed estimators that leverage the structure in slates to estimate the expected off-policy performance, but the estimation of the entire performance distribution remains elusive. Estimating the complete distribution allows for a more comprehensive evaluation of recommendation strategies, particularly along the axes of risk and fairness that employ metrics computable from the distribution. In this paper, we propose an estimator for the complete off-policy performance distribution for slates and establish conditions under which the estimator is unbiased and consistent. This builds upon prior work on off-policy evaluation for slates and off-policy distribution estimation in reinforcement learning. We validate the efficacy of our method empirically on synthetic data as well as on a slate recommendation simulator constructed from real-world data (MovieLens-20M). Our results show a significant reduction in estimation variance and improved sample efficiency over prior work across a range of slate structures.
FigCaps-HF: A Figure-to-Caption Generative Framework and Benchmark with Human Feedback
Singh, Ashish, Agarwal, Prateek, Huang, Zixuan, Singh, Arpita, Yu, Tong, Kim, Sungchul, Bursztyn, Victor, Vlassis, Nikos, Rossi, Ryan A.
Captions are crucial for understanding scientific visualizations and documents. Existing captioning methods for scientific figures rely on figure-caption pairs extracted from documents for training, many of which fall short with respect to metrics like helpfulness, explainability, and visual-descriptiveness [15] leading to generated captions being misaligned with reader preferences. To enable the generation of high-quality figure captions, we introduce FigCaps-HF a new framework for figure-caption generation that can incorporate domain expert feedback in generating captions optimized for reader preferences. Our framework comprises of 1) an automatic method for evaluating quality of figure-caption pairs, 2) a novel reinforcement learning with human feedback (RLHF) method to optimize a generative figure-to-caption model for reader preferences. We demonstrate the effectiveness of our simple learning framework by improving performance over standard fine-tuning across different types of models. In particular, when using BLIP as the base model, our RLHF framework achieves a mean gain of 35.7%, 16.9%, and 9% in ROUGE, BLEU, and Meteor, respectively. Finally, we release a large-scale benchmark dataset with human feedback on figure-caption pairs to enable further evaluation and development of RLHF techniques for this problem.
Local Policy Improvement for Recommender Systems
Liang, Dawen, Vlassis, Nikos
Recommender systems predict what items a user will interact with next, based on their past interactions. The problem is often approached through supervised learning, but recent advancements have shifted towards policy optimization of rewards (e.g., user engagement). One challenge with the latter is policy mismatch: we are only able to train a new policy given data collected from a previously-deployed policy. The conventional way to address this problem is through importance sampling correction, but this comes with practical limitations. We suggest an alternative approach of local policy improvement without off-policy correction. Our method computes and optimizes a lower bound of expected reward of the target policy, which is easy to estimate from data and does not involve density ratios (such as those appearing in importance sampling correction). This local policy improvement paradigm is ideal for recommender systems, as previous policies are typically of decent quality and policies are updated frequently. We provide empirical evidence and practical recipes for applying our technique in a sequential recommendation setting.
Off-Policy Evaluation of Slate Policies under Bayes Risk
Vlassis, Nikos, Gil, Fernando Amat, Chandrashekar, Ashok
We study the problem of off-policy evaluation for slate bandits, for the typical case in which the logging policy factorizes over the slots of the slate. We slightly depart from the existing literature by taking Bayes risk as the criterion by which to evaluate estimators, and we analyze the family of 'additive' estimators that includes the pseudoinverse (PI) estimator of Swaminathan et al.\ (2017; arXiv:1605.04812). Using a control variate approach, we identify a new estimator in this family that is guaranteed to have lower risk than PI in the above class of problems. In particular, we show that the risk improvement over PI grows linearly with the number of slots, and linearly with the gap between the arithmetic and the harmonic mean of a set of slot-level divergences between the logging and the target policy. In the typical case of a uniform logging policy and a deterministic target policy, each divergence corresponds to slot size, showing that maximal gains can be obtained for slate problems with diverse numbers of actions per slot.
Scalar Posterior Sampling with Applications
Theocharous, Georgios, Wen, Zheng, Abbasi, Yasin, Vlassis, Nikos
We propose a practical non-episodic PSRL algorithm that unlike recent state-of-the-art PSRL algorithms uses a deterministic, model-independent episode switching schedule. Our algorithm termed deterministic schedule PSRL (DS-PSRL) is efficient in terms of time, sample, and space complexity. We prove a Bayesian regret bound under mild assumptions. Our result is more generally applicable to multiple parameters and continuous state action problems. We compare our algorithm with state-of-the-art PSRL algorithms on standard discrete and continuous problems from the literature. Finally, we show how the assumptions of our algorithm satisfy a sensible parameterization for a large class of problems in sequential recommendations.
Scalar Posterior Sampling with Applications
Theocharous, Georgios, Wen, Zheng, Abbasi, Yasin, Vlassis, Nikos
We propose a practical non-episodic PSRL algorithm that unlike recent state-of-the-art PSRL algorithms uses a deterministic, model-independent episode switching schedule. Our algorithm termed deterministic schedule PSRL (DS-PSRL) is efficient in terms of time, sample, and space complexity. We prove a Bayesian regret bound under mild assumptions. Our result is more generally applicable to multiple parameters and continuous state action problems. We compare our algorithm with state-of-the-art PSRL algorithms on standard discrete and continuous problems from the literature. Finally, we show how the assumptions of our algorithm satisfy a sensible parameterization for a large class of problems in sequential recommendations.
Posterior Sampling for Large Scale Reinforcement Learning
Theocharous, Georgios, Wen, Zheng, Abbasi-Yadkori, Yasin, Vlassis, Nikos
We propose a practical non-episodic PSRL algorithm that unlike recent state-of-the-art PSRL algorithms uses a deterministic, model-independent episode switching schedule. Our algorithm termed deterministic schedule PSRL (DS-PSRL) is efficient in terms of time, sample, and space complexity. We prove a Bayesian regret bound under mild assumptions. Our result is more generally applicable to multiple parameters and continuous state action problems. We compare our algorithm with state-of-the-art PSRL algorithms on standard discrete and continuous problems from the literature. Finally, we show how the assumptions of our algorithm satisfy a sensible parametrization for a large class of problems in sequential recommendations.
Optimizing over a Restricted Policy Class in Markov Decision Processes
Banijamali, Ershad, Abbasi-Yadkori, Yasin, Ghavamzadeh, Mohammad, Vlassis, Nikos
We address the problem of finding an optimal policy in a Markov decision process under a restricted policy class defined by the convex hull of a set of base policies. This problem is of great interest in applications in which a number of reasonably good (or safe) policies are already known and we are only interested in optimizing in their convex hull. We show that this problem is NP-hard to solve exactly as well as to approximate to arbitrary accuracy. However, under a condition that is akin to the occupancy measures of the base policies having large overlap, we show that there exists an efficient algorithm that finds a policy that is almost as good as the best convex combination of the base policies. The running time of the proposed algorithm is linear in the number of states and polynomial in the number of base policies. In practice, we demonstrate an efficient implementation for large state problems. Compared to traditional policy gradient methods, the proposed approach has the advantage that, apart from the computation of occupancy measures of some base policies, the iterative method need not interact with the environment during the optimization process. This is especially important in complex systems where estimating the value of a policy can be a time consuming process.
Low-dimensional Data Embedding via Robust Ranking
Amid, Ehsan, Vlassis, Nikos, Warmuth, Manfred K.
We describe a new method called t-ETE for finding a low-dimensional embedding of a set of objects in Euclidean space. We formulate the embedding problem as a joint ranking problem over a set of triplets, where each triplet captures the relative similarities between three objects in the set. By exploiting recent advances in robust ranking, t-ETE produces high-quality embeddings even in the presence of a significant amount of noise and better preserves local scale than known methods, such as t-STE and t-SNE. In particular, our method produces significantly better results than t-SNE on signature datasets while also being faster to compute.
A posteriori error bounds for joint matrix decomposition problems
Colombo, Nicolo, Vlassis, Nikos
Joint matrix triangularization is often used for estimating the joint eigenstructure of a set M of matrices, with applications in signal processing and machine learning. We consider the problem of approximate joint matrix triangularization when the matrices in M are jointly diagonalizable and real, but we only observe a set M' of noise perturbed versions of the matrices in M. Our main result is a first-order upper bound on the distance between any approximate joint triangularizer of the matrices in M' and any exact joint triangularizer of the matrices in M. The bound depends only on the observable matrices in M' and the noise level. In particular, it does not depend on optimization specific properties of the triangularizer, such as its proximity to critical points, that are typical of existing bounds in the literature. To our knowledge, this is the first a posteriori bound for joint matrix decomposition. We demonstrate the bound on synthetic data for which the ground truth is known.