Vergari, Antonio
PIXAR: Auto-Regressive Language Modeling in Pixel Space
Tai, Yintao, Liao, Xiyang, Suglia, Alessandro, Vergari, Antonio
Recent works showed the possibility of building open-vocabulary large language models (LLMs) that directly operate on pixel representations and are implemented as encoder-decoder models that reconstruct masked image patches of rendered text. However, these pixel-based LLMs are limited to autoencoding tasks and cannot generate new text as images. As such, they cannot be used for open-answer or generative language tasks. In this work, we overcome this limitation and introduce PIXAR, the first pixel-based autoregressive LLM that does not rely on a pre-defined vocabulary for both input and output text. Consisting of only a decoder, PIXAR can answer free-form generative tasks while keeping the text representation learning performance on par with previous encoder-decoder models. Furthermore, we highlight the challenges to autoregressively generate non-blurred text as images and link this to the usual maximum likelihood objective. We propose a simple adversarial pretraining that significantly improves the readability and performance of PIXAR making it comparable to GPT2 on short text generation tasks. This paves the way to building open-vocabulary LLMs that are usable for free-form generative tasks and questions the necessity of the usual symbolic input representation -- text as tokens -- for these challenging tasks.
Not All Neuro-Symbolic Concepts Are Created Equal: Analysis and Mitigation of Reasoning Shortcuts
Marconato, Emanuele, Teso, Stefano, Vergari, Antonio, Passerini, Andrea
Neuro-Symbolic (NeSy) predictive models hold the promise of improved compliance with given constraints, systematic generalization, and interpretability, as they allow to infer labels that are consistent with some prior knowledge by reasoning over high-level concepts extracted from sub-symbolic inputs. It was recently shown that NeSy predictors are affected by reasoning shortcuts: they can attain high accuracy but by leveraging concepts with unintended semantics, thus coming short of their promised advantages. Yet, a systematic characterization of reasoning shortcuts and of potential mitigation strategies is missing. This work fills this gap by characterizing them as unintended optima of the learning objective and identifying four key conditions behind their occurrence. Based on this, we derive several natural mitigation strategies, and analyze their efficacy both theoretically and empirically. Our analysis shows reasoning shortcuts are difficult to deal with, casting doubts on the trustworthiness and interpretability of existing NeSy solutions.
Wearable data from subjects playing Super Mario, sitting university exams, or performing physical exercise help detect acute mood episodes via self-supervised learning
Corponi, Filippo, Li, Bryan M., Anmella, Gerard, Valenzuela-Pascual, Clàudia, Mas, Ariadna, Pacchiarotti, Isabella, Valentí, Marc, Grande, Iria, Benabarre, Antonio, Garriga, Marina, Vieta, Eduard, Young, Allan H, Lawrie, Stephen M., Whalley, Heather C., Hidalgo-Mazzei, Diego, Vergari, Antonio
Personal sensing, leveraging data passively and near-continuously collected with wearables from patients in their ecological environment, is a promising paradigm to monitor mood disorders (MDs), a major determinant of worldwide disease burden. However, collecting and annotating wearable data is very resource-intensive. Studies of this kind can thus typically afford to recruit only a couple dozens of patients. This constitutes one of the major obstacles to applying modern supervised machine learning techniques to MDs detection. In this paper, we overcome this data bottleneck and advance the detection of MDs acute episode vs stable state from wearables data on the back of recent advances in self-supervised learning (SSL). This leverages unlabelled data to learn representations during pre-training, subsequently exploited for a supervised task. First, we collected open-access datasets recording with an Empatica E4 spanning different, unrelated to MD monitoring, personal sensing tasks -- from emotion recognition in Super Mario players to stress detection in undergraduates -- and devised a pre-processing pipeline performing on-/off-body detection, sleep-wake detection, segmentation, and (optionally) feature extraction. With 161 E4-recorded subjects, we introduce E4SelfLearning, the largest to date open access collection, and its pre-processing pipeline. Second, we show that SSL confidently outperforms fully-supervised pipelines using either our novel E4-tailored Transformer architecture (E4mer) or classical baseline XGBoost: 81.23% against 75.35% (E4mer) and 72.02% (XGBoost) correctly classified recording segments from 64 (half acute, half stable) patients. Lastly, we illustrate that SSL performance is strongly associated with the specific surrogate task employed for pre-training as well as with unlabelled data availability.
Probabilistic Integral Circuits
Gala, Gennaro, de Campos, Cassio, Peharz, Robert, Vergari, Antonio, Quaeghebeur, Erik
Continuous latent variables (LVs) are a key ingredient of many generative models, as they allow modelling expressive mixtures with an uncountable number of components. In contrast, probabilistic circuits (PCs) are hierarchical discrete mixtures represented as computational graphs composed of input, sum and product units. Unlike continuous LV models, PCs provide tractable inference but are limited to discrete LVs with categorical (i.e. unordered) states. We bridge these model classes by introducing probabilistic integral circuits (PICs), a new language of computational graphs that extends PCs with integral units representing continuous LVs. In the first place, PICs are symbolic computational graphs and are fully tractable in simple cases where analytical integration is possible. In practice, we parameterise PICs with light-weight neural nets delivering an intractable hierarchical continuous mixture that can be approximated arbitrarily well with large PCs using numerical quadrature. On several distribution estimation benchmarks, we show that such PIC-approximating PCs systematically outperform PCs commonly learned via expectation-maximization or SGD.
Subtractive Mixture Models via Squaring: Representation and Learning
Loconte, Lorenzo, Sladek, Aleksanteri M., Mengel, Stefan, Trapp, Martin, Solin, Arno, Gillis, Nicolas, Vergari, Antonio
Mixture models are traditionally represented and learned by adding several distributions as components. Allowing mixtures to subtract probability mass or density can drastically reduce the number of components needed to model complex distributions. However, learning such subtractive mixtures while ensuring they still encode a non-negative function is challenging. We investigate how to learn and perform inference on deep subtractive mixtures by squaring them. We do this in the framework of probabilistic circuits, which enable us to represent tensorized mixtures and generalize several other subtractive models. We theoretically prove that the class of squared circuits allowing subtractions can be exponentially more expressive than traditional additive mixtures; and, we empirically show this increased expressiveness on a series of real-world distribution estimation tasks.
Knowledge Graph Embeddings in the Biomedical Domain: Are They Useful? A Look at Link Prediction, Rule Learning, and Downstream Polypharmacy Tasks
Gema, Aryo Pradipta, Grabarczyk, Dominik, De Wulf, Wolf, Borole, Piyush, Alfaro, Javier Antonio, Minervini, Pasquale, Vergari, Antonio, Rajan, Ajitha
Knowledge graphs are powerful tools for representing and organising complex biomedical data. Several knowledge graph embedding algorithms have been proposed to learn from and complete knowledge graphs. However, a recent study demonstrates the limited efficacy of these embedding algorithms when applied to biomedical knowledge graphs, raising the question of whether knowledge graph embeddings have limitations in biomedical settings. This study aims to apply state-of-the-art knowledge graph embedding models in the context of a recent biomedical knowledge graph, BioKG, and evaluate their performance and potential downstream uses. We achieve a three-fold improvement in terms of performance based on the HITS@10 score over previous work on the same biomedical knowledge graph. Additionally, we provide interpretable predictions through a rule-based method. We demonstrate that knowledge graph embedding models are applicable in practice by evaluating the best-performing model on four tasks that represent real-life polypharmacy situations. Results suggest that knowledge learnt from large biomedical knowledge graphs can be transferred to such downstream use cases. Our code is available at https://github.com/aryopg/biokge.
From MNIST to ImageNet and Back: Benchmarking Continual Curriculum Learning
Faber, Kamil, Zurek, Dominik, Pietron, Marcin, Japkowicz, Nathalie, Vergari, Antonio, Corizzo, Roberto
Continual learning (CL) is one of the most promising trends in recent machine learning research. Its goal is to go beyond classical assumptions in machine learning and develop models and learning strategies that present high robustness in dynamic environments. The landscape of CL research is fragmented into several learning evaluation protocols, comprising different learning tasks, datasets, and evaluation metrics. Additionally, the benchmarks adopted so far are still distant from the complexity of real-world scenarios, and are usually tailored to highlight capabilities specific to certain strategies. In such a landscape, it is hard to objectively assess strategies. In this work, we fill this gap for CL on image data by introducing two novel CL benchmarks that involve multiple heterogeneous tasks from six image datasets, with varying levels of complexity and quality. Our aim is to fairly evaluate current state-of-the-art CL strategies on a common ground that is closer to complex real-world scenarios. We additionally structure our benchmarks so that tasks are presented in increasing and decreasing order of complexity -- according to a curriculum -- in order to evaluate if current CL models are able to exploit structure across tasks. We devote particular emphasis to providing the CL community with a rigorous and reproducible evaluation protocol for measuring the ability of a model to generalize and not to forget while learning. Furthermore, we provide an extensive experimental evaluation showing that popular CL strategies, when challenged with our benchmarks, yield sub-par performance, high levels of forgetting, and present a limited ability to effectively leverage curriculum task ordering. We believe that these results highlight the need for rigorous comparisons in future CL works as well as pave the way to design new CL strategies that are able to deal with more complex scenarios.
Efficient and Reliable Probabilistic Interactive Learning with Structured Outputs
Teso, Stefano, Vergari, Antonio
In this position paper, we study interactive learning for structured output spaces, with a focus on active learning, in which labels are unknown and must be acquired, and on skeptical learning, in which the labels are noisy and may need relabeling. These scenarios require expressive models that guarantee reliable and efficient computation of probabilistic quantities to measure uncertainty. We identify conditions under which a class of probabilistic models -- which we denote CRISPs -- meet all of these conditions, thus delivering tractable computation of the above quantities while preserving expressiveness. Building on prior work on tractable probabilistic circuits, we illustrate how CRISPs enable robust and efficient active and skeptical learning in large structured output spaces.
Tractable Computation of Expected Kernels by Circuits
Li, Wenzhe, Zeng, Zhe, Vergari, Antonio, Broeck, Guy Van den
Computing the expectation of some kernel function is ubiquitous in machine learning, from the classical theory of support vector machines, to exploiting kernel embeddings of distributions in applications ranging from probabilistic modeling, statistical inference, casual discovery, and deep learning. In all these scenarios, we tend to resort to Monte Carlo estimates as expectations of kernels are intractable in general. In this work, we characterize the conditions under which we can compute expected kernels exactly and efficiently, by leveraging recent advances in probabilistic circuit representations. We first construct a circuit representation for kernels and propose an approach to such tractable computation. We then demonstrate possible advancements for kernel embedding frameworks by exploiting tractable expected kernels to derive new algorithms for two challenging scenarios: 1) reasoning under missing data with kernel support vector regressors; 2) devising a collapsed black-box importance sampling scheme. Finally, we empirically evaluate both algorithms and show that they outperform standard baselines on a variety of datasets.
A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries
Vergari, Antonio, Choi, YooJung, Liu, Anji, Teso, Stefano, Broeck, Guy Van den
Circuit representations are becoming the lingua franca to express and reason about tractable generative and discriminative models. In this paper, we show how complex inference scenarios for these models that commonly arise in machine learning -- from computing the expectations of decision tree ensembles to information-theoretic divergences of deep mixture models -- can be represented in terms of tractable modular operations over circuits. Specifically, we characterize the tractability of a vocabulary of simple transformations -- sums, products, quotients, powers, logarithms, and exponentials -- in terms of sufficient structural constraints of the circuits they operate on, and present novel hardness results for the cases in which these properties are not satisfied. Building on these operations, we derive a unified framework for reasoning about tractable models that generalizes several results in the literature and opens up novel tractable inference scenarios.