Unal, Gozde
Disentanglement with Factor Quantized Variational Autoencoders
Baykal, Gulcin, Kandemir, Melih, Unal, Gozde
Disentangled representation learning aims to represent the underlying generative factors of a dataset in a latent representation independently of one another. In our work, we propose a discrete variational autoencoder (VAE) based model where the ground truth information about the generative factors are not provided to the model. We demonstrate the advantages of learning discrete representations over learning continuous representations in facilitating disentanglement. Furthermore, we propose incorporating an inductive bias into the model to further enhance disentanglement. Precisely, we propose scalar quantization of the latent variables in a latent representation with scalar values from a global codebook, and we add a total correlation term to the optimization as an inductive bias. Our method called FactorQVAE is the first method that combines optimization based disentanglement approaches with discrete representation learning, and it outperforms the former disentanglement methods in terms of two disentanglement metrics (DCI and InfoMEC) while improving the reconstruction performance. Our code can be found at \url{https://github.com/ituvisionlab/FactorQVAE}.
Calibrating Bayesian UNet++ for Sub-Seasonal Forecasting
Asan, Busra, Akgül, Abdullah, Unal, Alper, Kandemir, Melih, Unal, Gozde
Seasonal forecasting is a crucial task when it comes to detecting the extreme heat and colds that occur due to climate change. Confidence in the predictions should be reliable since a small increase in the temperatures in a year has a big impact on the world. Calibration of the neural networks provides a way to ensure our confidence in the predictions. However, calibrating regression models is an under-researched topic, especially in forecasters. We calibrate a UNet++ based architecture, which was shown to outperform physics-based models in temperature anomalies. We show that with a slight trade-off between prediction error and calibration error, it is possible to get more reliable and sharper forecasts. We believe that calibration should be an important part of safety-critical machine learning applications such as weather forecasters.
EdVAE: Mitigating Codebook Collapse with Evidential Discrete Variational Autoencoders
Baykal, Gulcin, Kandemir, Melih, Unal, Gozde
Codebook collapse is a common problem in training deep generative models with discrete representation spaces like Vector Quantized Variational Autoencoders (VQ-VAEs). We observe that the same problem arises for the alternatively designed discrete variational autoencoders (dVAEs) whose encoder directly learns a distribution over the codebook embeddings to represent the data. We hypothesize that using the softmax function to obtain a probability distribution causes the codebook collapse by assigning overconfident probabilities to the best matching codebook elements. In this paper, we propose a novel way to incorporate evidential deep learning (EDL) instead of softmax to combat the codebook collapse problem of dVAE. We evidentially monitor the significance of attaining the probability distribution over the codebook embeddings, in contrast to softmax usage. Our experiments using various datasets show that our model, called EdVAE, mitigates codebook collapse while improving the reconstruction performance, and enhances the codebook usage compared to dVAE and VQ-VAE based models. Our code can be found at https://github.com/ituvisionlab/EdVAE .
ProtoDiffusion: Classifier-Free Diffusion Guidance with Prototype Learning
Baykal, Gulcin, Karagoz, Halil Faruk, Binhuraib, Taha, Unal, Gozde
Diffusion models are generative models that have shown significant advantages compared to other generative models in terms of higher generation quality and more stable training. However, the computational need for training diffusion models is considerably increased. In this work, we incorporate prototype learning into diffusion models to achieve high generation quality faster than the original diffusion model. Instead of randomly initialized class embeddings, we use separately learned class prototypes as the conditioning information to guide the diffusion process. We observe that our method, called ProtoDiffusion, achieves better performance in the early stages of training compared to the baseline method, signifying that using the learned prototypes shortens the training time. We demonstrate the performance of ProtoDiffusion using various datasets and experimental settings, achieving the best performance in shorter times across all settings.
Continual Learning of Multi-modal Dynamics with External Memory
Akgül, Abdullah, Unal, Gozde, Kandemir, Melih
We study the problem of fitting a model to a dynamical environment when new modes of behavior emerge sequentially. The learning model is aware when a new mode appears, but it does not have access to the true modes of individual training sequences. The state-of-the-art continual learning approaches cannot handle this setup, because parameter transfer suffers from catastrophic interference and episodic memory design requires the knowledge of the ground-truth modes of sequences. We devise a novel continual learning method that overcomes both limitations by maintaining a descriptor of the mode of an encountered sequence in a neural episodic memory. We employ a Dirichlet Process prior on the attention weights of the memory to foster efficient storage of the mode descriptors. Our method performs continual learning by transferring knowledge across tasks by retrieving the descriptors of similar modes of past tasks to the mode of a current sequence and feeding this descriptor into its transition kernel as control input. We observe the continual learning performance of our method to compare favorably to the mainstream parameter transfer approach.
GaussianMLR: Learning Implicit Class Significance via Calibrated Multi-Label Ranking
Yesilkaynak, V. Bugra, Dari, Emine, Mertan, Alican, Unal, Gozde
Existing multi-label frameworks only exploit the information deduced from the bipartition of the labels into a positive and negative set. Therefore, they do not benefit from the ranking order between positive labels, which is the concept we introduce in this paper. We propose a novel multi-label ranking method: GaussianMLR, which aims to learn implicit class significance values that determine the positive label ranks instead of treating them as of equal importance, by following an approach that unifies ranking and classification tasks associated with multi-label ranking. Due to the scarcity of public datasets, we introduce eight synthetic datasets generated under varying importance factors to provide an enriched and controllable experimental environment for this study. On both real-world and synthetic datasets, we carry out extensive comparisons with relevant baselines and evaluate the performance on both of the two sub-tasks. We show that our method is able to accurately learn a representation of the incorporated positive rank order, which is not only consistent with the ground truth but also proportional to the underlying information. We strengthen our claims empirically by conducting comprehensive experimental studies.
Climate Model Driven Seasonal Forecasting Approach with Deep Learning
Unal, Alper, Asan, Busra, Sezen, Ismail, Yesilkaynak, Bugra, Aydin, Yusuf, Ilicak, Mehmet, Unal, Gozde
Understanding seasonal climatic conditions is critical for better management of resources such as water, energy and agriculture. Recently, there has been a great interest in utilizing the power of artificial intelligence methods in climate studies. This paper presents a cutting-edge deep learning model (UNet++) trained by state-of-the-art global CMIP6 models to forecast global temperatures a month ahead using the ERA5 reanalysis dataset. ERA5 dataset was also used for finetuning as well performance analysis in the validation dataset. Three different setups (CMIP6; CMIP6 + elevation; CMIP6 + elevation + ERA5 finetuning) were used with both UNet and UNet++ algorithms resulting in six different models. For each model 14 different sequential and non-sequential temporal settings were used. The Mean Absolute Error (MAE) analysis revealed that UNet++ with CMIP6 with elevation and ERA5 finetuning model with "Year 3 Month 2" temporal case provided the best outcome with an MAE of 0.7. Regression analysis over the validation dataset between the ERA5 data values and the corresponding AI model predictions revealed slope and $R^2$ values close to 1 suggesting a very good agreement. The AI model predicts significantly better than the mean CMIP6 ensemble between 2016 and 2021. Both models predict the summer months more accurately than the winter months.
RLSEP: Learning Label Ranks for Multi-label Classification
Dari, Emine, Yesilkaynak, V. Bugra, Mertan, Alican, Unal, Gozde
Multi-label ranking maps instances to a ranked set of predicted labels from multiple possible classes. The ranking approach for multi-label learning problems received attention for its success in multi-label classification, with one of the well-known approaches being pairwise label ranking. However, most existing methods assume that only partial information about the preference relation is known, which is inferred from the partition of labels into a positive and negative set, then treat labels with equal importance. In this paper, we focus on the unique challenge of ranking when the order of the true label set is provided. We propose a novel dedicated loss function to optimize models by incorporating penalties for incorrectly ranked pairs, and make use of the ranking information present in the input. Our method achieves the best reported performance measures on both synthetic and real world ranked datasets and shows improvements on overall ranking of labels. Our experimental results demonstrate that our approach is generalizable to a variety of multi-label classification and ranking tasks, while revealing a calibration towards a certain ranking ordering.
How to Combine Variational Bayesian Networks in Federated Learning
Ozer, Atahan, Buldu, Kadir Burak, Akgül, Abdullah, Unal, Gozde
Federated Learning enables multiple data centers to train a central model collaboratively without exposing any confidential data. Even though deterministic models are capable of performing high prediction accuracy, their lack of calibration and capability to quantify uncertainty is problematic for safety-critical applications. Different from deterministic models, probabilistic models such as Bayesian neural networks are relatively well-calibrated and able to quantify uncertainty alongside their competitive prediction accuracy. Both of the approaches appear in the federated learning framework; however, the aggregation scheme of deterministic models cannot be directly applied to probabilistic models since weights correspond to distributions instead of point estimates. In this work, we study the effects of various aggregation schemes for variational Bayesian neural networks. With empirical results on three image classification datasets, we observe that the degree of spread for an aggregated distribution is a significant factor in the learning process. Hence, we present an survey on the question of how to combine variational Bayesian networks in federated learning, while providing computer vision classification benchmarks for different aggregation settings.