Goto

Collaborating Authors

 Tseng, H. Eric


Prospective Role of Foundation Models in Advancing Autonomous Vehicles

arXiv.org Artificial Intelligence

With the development of artificial intelligence and breakthroughs in deep learning, large-scale Foundation Models (FMs), such as GPT, Sora, etc., have achieved remarkable results in many fields including natural language processing and computer vision. The application of FMs in autonomous driving holds considerable promise. For example, they can contribute to enhancing scene understanding and reasoning. By pre-training on rich linguistic and visual data, FMs can understand and interpret various elements in a driving scene, and provide cognitive reasoning to give linguistic and action instructions for driving decisions and planning. Furthermore, FMs can augment data based on the understanding of driving scenarios to provide feasible scenes of those rare occurrences in the long tail distribution that are unlikely to be encountered during routine driving and data collection. The enhancement can subsequently lead to improvement in the accuracy and reliability of autonomous driving systems. Another testament to the potential of FMs' applications lies in World Models, exemplified by the DREAMER series, which showcases the ability to comprehend physical laws and dynamics. Learning from massive data under the paradigm of self-supervised learning, World Model can generate unseen yet plausible driving environments, facilitating the enhancement in the prediction of road users' behaviors and the off-line training of driving strategies. In this paper, we synthesize the applications and future trends of FMs in autonomous driving. By utilizing the powerful capabilities of FMs, we strive to tackle the potential issues stemming from the long-tail distribution in autonomous driving, consequently advancing overall safety in this domain.


Autonomous Driving With Perception Uncertainties: Deep-Ensemble Based Adaptive Cruise Control

arXiv.org Artificial Intelligence

Autonomous driving depends on perception systems to understand the environment and to inform downstream decision-making. While advanced perception systems utilizing black-box Deep Neural Networks (DNNs) demonstrate human-like comprehension, their unpredictable behavior and lack of interpretability may hinder their deployment in safety critical scenarios. In this paper, we develop an Ensemble of DNN regressors (Deep Ensemble) that generates predictions with quantification of prediction uncertainties. In the scenario of Adaptive Cruise Control (ACC), we employ the Deep Ensemble to estimate distance headway to the lead vehicle from RGB images and enable the downstream controller to account for the estimation uncertainty. We develop an adaptive cruise controller that utilizes Stochastic Model Predictive Control (MPC) with chance constraints to provide a probabilistic safety guarantee. We evaluate our ACC algorithm using a high-fidelity traffic simulator and a real-world traffic dataset and demonstrate the ability of the proposed approach to effect speed tracking and car following while maintaining a safe distance headway. The out-of-distribution scenarios are also examined.


Sharable Clothoid-based Continuous Motion Planning for Connected Automated Vehicles

arXiv.org Artificial Intelligence

A continuous motion planning method for connected automated vehicles is considered for generating feasible trajectories in real-time using three consecutive clothoids. The proposed method reduces path planning to a small set of nonlinear algebraic equations such that the generated path can be efficiently checked for feasibility and collision. After path planning, velocity planning is executed while maintaining a parallel simple structure. Key strengths of this framework include its interpretability, shareability, and ability to specify boundary conditions. Its interpretability and shareability stem from the succinct representation of the resulting local motion plan using a handful of physically meaningful parameters. Vehicles may share these parameters via V2X communication so that the recipients can precisely reconstruct the planned trajectory of the senders and respond accordingly. The proposed local planner guarantees the satisfaction of boundary conditions, thus ensuring seamless integration with a wide array of higher-level global motion planners. The tunable nature of the method enables tailoring the local plans to specific maneuvers like turns at intersections, lane changes, and U-turns.


Dream to Adapt: Meta Reinforcement Learning by Latent Context Imagination and MDP Imagination

arXiv.org Artificial Intelligence

Meta reinforcement learning (Meta RL) has been amply explored to quickly learn an unseen task by transferring previously learned knowledge from similar tasks. However, most state-of-the-art algorithms require the meta-training tasks to have a dense coverage on the task distribution and a great amount of data for each of them. In this paper, we propose MetaDreamer, a context-based Meta RL algorithm that requires less real training tasks and data by doing meta-imagination and MDPimagination. We perform meta-imagination by interpolating on the learned latent context space with disentangled properties, as well as MDP-imagination through the generative world model where physical knowledge is added to plain VAE networks. Our experiments with various benchmarks show that MetaDreamer outperforms existing approaches in data efficiency and interpolated generalization. Meta reinforcement learning has been widely explored to enable quick adaptation to new tasks by learning "how to learn" across a set of meta-training tasks. State-of-the-art meta-learning algorithms have achieved great success in adaptation efficiency and generalization. However, these algorithms rely heavily on abundant data of a large number of diverse meta-training tasks and dense coverage on the task distribution, which may not always be available in real-world.


Predictive Control for Autonomous Driving with Uncertain, Multi-modal Predictions

arXiv.org Artificial Intelligence

We propose a Stochastic MPC (SMPC) formulation for path planning with autonomous vehicles in scenarios involving multiple agents with multi-modal predictions. The multi-modal predictions capture the uncertainty of urban driving in distinct modes/maneuvers (e.g., yield, keep speed) and driving trajectories (e.g., speed, turning radius), which are incorporated for multi-modal collision avoidance chance constraints for path planning. In the presence of multi-modal uncertainties, it is challenging to reliably compute feasible path planning solutions at real-time frequencies ($\geq$ 10 Hz). Our main technological contribution is a convex SMPC formulation that simultaneously (1) optimizes over parameterized feedback policies and (2) allocates risk levels for each mode of the prediction. The use of feedback policies and risk allocation enhances the feasibility and performance of the SMPC formulation against multi-modal predictions with large uncertainty. We evaluate our approach via simulations and road experiments with a full-scale vehicle interacting in closed-loop with virtual vehicles. We consider distinct, multi-modal driving scenarios: 1) Negotiating a traffic light and a fast, tailgating agent, 2) Executing an unprotected left turn at a traffic intersection, and 3) Changing lanes in the presence of multiple agents. For all of these scenarios, our approach reliably computes multi-modal solutions to the path-planning problem at real-time frequencies.


Decision-Making for Autonomous Vehicles with Interaction-Aware Behavioral Prediction and Social-Attention Neural Network

arXiv.org Artificial Intelligence

Autonomous vehicles need to accomplish their tasks while interacting with human drivers in traffic. It is thus crucial to equip autonomous vehicles with artificial reasoning to better comprehend the intentions of the surrounding traffic, thereby facilitating the accomplishments of the tasks. In this work, we propose a behavioral model that encodes drivers' interacting intentions into latent social-psychological parameters. Leveraging a Bayesian filter, we develop a receding-horizon optimization-based controller for autonomous vehicle decision-making which accounts for the uncertainties in the interacting drivers' intentions. For online deployment, we design a neural network architecture based on the attention mechanism which imitates the behavioral model with online estimated parameter priors. We also propose a decision tree search algorithm to solve the decision-making problem online. The proposed behavioral model is then evaluated in terms of its capabilities for real-world trajectory prediction. We further conduct extensive evaluations of the proposed decision-making module, in forced highway merging scenarios, using both simulated environments and real-world traffic datasets. The results demonstrate that our algorithms can complete the forced merging tasks in various traffic conditions while ensuring driving safety.


Interaction-Aware Decision-Making for Autonomous Vehicles in Forced Merging Scenario Leveraging Social Psychology Factors

arXiv.org Artificial Intelligence

Understanding the intention of vehicles in the surrounding traffic is crucial for an autonomous vehicle to successfully accomplish its driving tasks in complex traffic scenarios such as highway forced merging. In this paper, we consider a behavioral model that incorporates both social behaviors and personal objectives of the interacting drivers. Leveraging this model, we develop a receding-horizon control-based decision-making strategy, that estimates online the other drivers' intentions using Bayesian filtering and incorporates predictions of nearby vehicles' behaviors under uncertain intentions. The effectiveness of the proposed decision-making strategy is demonstrated and evaluated based on simulation studies in comparison with a game theoretic controller and a real-world traffic dataset.


Improved Robustness and Safety for Pre-Adaptation of Meta Reinforcement Learning with Prior Regularization

arXiv.org Artificial Intelligence

Meta Reinforcement Learning (Meta-RL) has seen substantial advancements recently. In particular, off-policy methods were developed to improve the data efficiency of Meta-RL techniques. \textit{Probabilistic embeddings for actor-critic RL} (PEARL) is a leading approach for multi-MDP adaptation problems. A major drawback of many existing Meta-RL methods, including PEARL, is that they do not explicitly consider the safety of the prior policy when it is exposed to a new task for the first time. Safety is essential for many real-world applications, including field robots and Autonomous Vehicles (AVs). In this paper, we develop the PEARL PLUS (PEARL$^+$) algorithm, which optimizes the policy for both prior (pre-adaptation) safety and posterior (after-adaptation) performance. Building on top of PEARL, our proposed PEARL$^+$ algorithm introduces a prior regularization term in the reward function and a new Q-network for recovering the state-action value under prior context assumptions, to improve the robustness to task distribution shift and safety of the trained network exposed to a new task for the first time. The performance of PEARL$^+$ is validated by solving three safety-critical problems related to robots and AVs, including two MuJoCo benchmark problems. From the simulation experiments, we show that safety of the prior policy is significantly improved and more robust to task distribution shift compared to PEARL.


Safe Control and Learning Using Generalized Action Governor

arXiv.org Artificial Intelligence

This paper introduces the Generalized Action Governor, which is a supervisory scheme for augmenting a nominal closed-loop system with the capability of strictly handling constraints. After presenting its theory for general systems and introducing tailored design approaches for linear and discrete systems, we discuss its application to safe online learning, which aims to safely evolve control parameters using real-time data to improve performance for uncertain systems. In particular, we propose two safe learning algorithms based on integration of reinforcement learning/data-driven Koopman operator-based control with the generalized action governor. The developments are illustrated with a numerical example.


REFINE: Reachability-based Trajectory Design using Robust Feedback Linearization and Zonotopes

arXiv.org Artificial Intelligence

Performing real-time receding horizon motion planning for autonomous vehicles while providing safety guarantees remains difficult. This is because existing methods to accurately predict ego vehicle behavior under a chosen controller use online numerical integration that requires a fine time discretization and thereby adversely affects real-time performance. To address this limitation, several recent papers have proposed to apply offline reachability analysis to conservatively predict the behavior of the ego vehicle. This reachable set can be constructed by utilizing a simplified model whose behavior is assumed a priori to conservatively bound the dynamics of a full-order model. However, guaranteeing that one satisfies this assumption is challenging. This paper proposes a framework named REFINE to overcome the limitations of these existing approaches. REFINE utilizes a parameterized robust controller that partially linearizes the vehicle dynamics even in the presence of modeling error. Zonotope-based reachability analysis is then performed on the closed-loop, full-order vehicle dynamics to compute the corresponding control-parameterized, over-approximate Forward Reachable Sets (FRS). Because reachability analysis is applied to the full-order model, the potential conservativeness introduced by using a simplified model is avoided. The pre-computed, control-parameterized FRS is then used online in an optimization framework to ensure safety. The proposed method is compared to several state of the art methods during a simulation-based evaluation on a full-size vehicle model and is evaluated on a 1/10th race car robot in real hardware testing. In contrast to existing methods, REFINE is shown to enable the vehicle to safely navigate itself through complex environments.