Tsaftaris, Sotirios A.
Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models
Stogiannidis, Ilias, McDonagh, Steven, Tsaftaris, Sotirios A.
Vision-Language Models (VLMs) have recently emerged as powerful tools, excelling in tasks that integrate visual and textual comprehension, such as image captioning, visual question answering, and image-text retrieval. However, existing benchmarks for VLMs include spatial components, which often fail to isolate spatial reasoning from related tasks such as object detection or semantic comprehension. In this paper, we address these deficiencies with a multi-faceted approach towards understanding spatial reasoning. Informed by the diverse and multi-dimensional nature of human spatial reasoning abilities, we present a detailed analysis that first delineates the core elements of spatial reasoning: spatial relations, orientation and navigation, mental rotation, and spatial visualization, and then assesses the performance of these models in both synthetic and real-world images, bridging controlled and naturalistic contexts. W e analyze 13 state-of-the-art Vision-Language Models, uncovering pivotal insights into their spatial reasoning performance. Our results reveal profound shortcomings in current VLMs, with average accuracy across the 13 models approximating random chance, highlighting spatial reasoning as a persistent obstacle. This work not only exposes the pressing need to advance spatial reasoning within VLMs but also establishes a solid platform for future exploration.
CRCE: Coreference-Retention Concept Erasure in Text-to-Image Diffusion Models
Xue, Yuyang, Moroshko, Edward, Chen, Feng, McDonagh, Steven, Tsaftaris, Sotirios A.
Text-to-Image diffusion models can produce undesirable content that necessitates concept erasure techniques. However, existing methods struggle with under-erasure, leaving residual traces of targeted concepts, or over-erasure, mistakenly eliminating unrelated but visually similar concepts. To address these limitations, we introduce CRCE, a novel concept erasure framework that leverages Large Language Models to identify both semantically related concepts that should be erased alongside the target and distinct concepts that should be preserved. By explicitly modeling coreferential and retained concepts semantically, CRCE enables more precise concept removal, without unintended erasure. Experiments demonstrate that CRCE outperforms existing methods on diverse erasure tasks.
Unlocking the Potential of Weakly Labeled Data: A Co-Evolutionary Learning Framework for Abnormality Detection and Report Generation
Sun, Jinghan, Wei, Dong, Xu, Zhe, Lu, Donghuan, Liu, Hong, Wang, Hong, Tsaftaris, Sotirios A., McDonagh, Steven, Zheng, Yefeng, Wang, Liansheng
Anatomical abnormality detection and report generation of chest X-ray (CXR) are two essential tasks in clinical practice. The former aims at localizing and characterizing cardiopulmonary radiological findings in CXRs, while the latter summarizes the findings in a detailed report for further diagnosis and treatment. Existing methods often focused on either task separately, ignoring their correlation. This work proposes a co-evolutionary abnormality detection and report generation (CoE-DG) framework. The framework utilizes both fully labeled (with bounding box annotations and clinical reports) and weakly labeled (with reports only) data to achieve mutual promotion between the abnormality detection and report generation tasks. Specifically, we introduce a bi-directional information interaction strategy with generator-guided information propagation (GIP) and detector-guided information propagation (DIP). For semi-supervised abnormality detection, GIP takes the informative feature extracted by the generator as an auxiliary input to the detector and uses the generator's prediction to refine the detector's pseudo labels. We further propose an intra-image-modal self-adaptive non-maximum suppression module (SA-NMS). This module dynamically rectifies pseudo detection labels generated by the teacher detection model with high-confidence predictions by the student.Inversely, for report generation, DIP takes the abnormalities' categories and locations predicted by the detector as input and guidance for the generator to improve the generated reports.
The MRI Scanner as a Diagnostic: Image-less Active Sampling
Du, Yuning, Dharmakumar, Rohan, Tsaftaris, Sotirios A.
Despite the high diagnostic accuracy of Magnetic Resonance Imaging (MRI), using MRI as a Point-of-Care (POC) disease identification tool poses significant accessibility challenges due to the use of high magnetic field strength and lengthy acquisition times. We ask a simple question: Can we dynamically optimise acquired samples, at the patient level, according to an (automated) downstream decision task, while discounting image reconstruction? We propose an ML-based framework that learns an active sampling strategy, via reinforcement learning, at a patient-level to directly infer disease from undersampled k-space. We validate our approach by inferring Meniscus Tear in undersampled knee MRI data, where we achieve diagnostic performance comparable with ML-based diagnosis, using fully sampled k-space data. We analyse task-specific sampling policies, showcasing the adaptability of our active sampling approach. The introduced frugal sampling strategies have the potential to reduce high field strength requirements that in turn strengthen the viability of MRI-based POC disease identification and associated preliminary screening tools.
Erase to Enhance: Data-Efficient Machine Unlearning in MRI Reconstruction
Xue, Yuyang, Liu, Jingshuai, McDonagh, Steven, Tsaftaris, Sotirios A.
Machine unlearning is a promising paradigm for removing unwanted data samples from a trained model, towards ensuring compliance with privacy regulations and limiting harmful biases. Although unlearning has been shown in, e.g., classification and recommendation systems, its potential in medical image-to-image translation, specifically in image recon-struction, has not been thoroughly investigated. This paper shows that machine unlearning is possible in MRI tasks and has the potential to benefit for bias removal. We set up a protocol to study how much shared knowledge exists between datasets of different organs, allowing us to effectively quantify the effect of unlearning. Our study reveals that combining training data can lead to hallucinations and reduced image quality in the reconstructed data. We use unlearning to remove hallucinations as a proxy exemplar of undesired data removal. Indeed, we show that machine unlearning is possible without full retraining. Furthermore, our observations indicate that maintaining high performance is feasible even when using only a subset of retain data. We have made our code publicly accessible.
Benchmarking Counterfactual Image Generation
Melistas, Thomas, Spyrou, Nikos, Gkouti, Nefeli, Sanchez, Pedro, Vlontzos, Athanasios, Panagakis, Yannis, Papanastasiou, Giorgos, Tsaftaris, Sotirios A.
Generative AI has revolutionised visual content editing, empowering users to effortlessly modify images and videos. However, not all edits are equal. To perform realistic edits in domains such as natural image or medical imaging, modifications must respect causal relationships inherent to the data generation process. Such image editing falls into the counterfactual image generation regime. Evaluating counterfactual image generation is substantially complex: not only it lacks observable ground truths, but also requires adherence to causal constraints. Although several counterfactual image generation methods and evaluation metrics exist, a comprehensive comparison within a unified setting is lacking. We present a comparison framework to thoroughly benchmark counterfactual image generation methods. We integrate all models that have been used for the task at hand and expand them to novel datasets and causal graphs, demonstrating the superiority of Hierarchical VAEs across most datasets and metrics. Our framework is implemented in a user-friendly Python package that can be extended to incorporate additional SCMs, causal methods, generative models, and datasets for the community to build on.
MemControl: Mitigating Memorization in Medical Diffusion Models via Automated Parameter Selection
Dutt, Raman, Sanchez, Pedro, Bohdal, Ondrej, Tsaftaris, Sotirios A., Hospedales, Timothy
Diffusion models show a remarkable ability in generating images that closely mirror the training distribution. However, these models are prone to training data memorization, leading to significant privacy, ethical, and legal concerns, particularly in sensitive fields such as medical imaging. We hypothesize that memorization is driven by the overparameterization of deep models, suggesting that regularizing model capacity during fine-tuning could be an effective mitigation strategy. Parameter-efficient fine-tuning (PEFT) methods offer a promising approach to capacity control by selectively updating specific parameters. However, finding the optimal subset of learnable parameters that balances generation quality and memorization remains elusive. To address this challenge, we propose a bi-level optimization framework that guides automated parameter selection by utilizing memorization and generation quality metrics as rewards. Our framework successfully identifies the optimal parameter set to be updated to satisfy the generation-memorization tradeoff. We perform our experiments for the specific task of medical image generation and outperform existing state-of-the-art training-time mitigation strategies by fine-tuning as few as 0.019% of model parameters. Furthermore, we show that the strategies learned through our framework are transferable across different datasets and domains. Our proposed framework is scalable to large datasets and agnostic to the choice of reward functions. Finally, we show that our framework can be combined with existing approaches for further memorization mitigation.
Zero-Shot Medical Phrase Grounding with Off-the-shelf Diffusion Models
Vilouras, Konstantinos, Sanchez, Pedro, O'Neil, Alison Q., Tsaftaris, Sotirios A.
Localizing the exact pathological regions in a given medical scan is an important imaging problem that requires a large amount of bounding box ground truth annotations to be accurately solved. However, there exist alternative, potentially weaker, forms of supervision, such as accompanying free-text reports, which are readily available. The task of performing localization with textual guidance is commonly referred to as phrase grounding. In this work, we use a publicly available Foundation Model, namely the Latent Diffusion Model, to solve this challenging task. This choice is supported by the fact that the Latent Diffusion Model, despite being generative in nature, contains mechanisms (cross-attention) that implicitly align visual and textual features, thus leading to intermediate representations that are suitable for the task at hand. In addition, we aim to perform this task in a zero-shot manner, i.e., without any further training on target data, meaning that the model's weights remain frozen. To this end, we devise strategies to select features and also refine them via post-processing without extra learnable parameters. We compare our proposed method with state-of-the-art approaches which explicitly enforce image-text alignment in a joint embedding space via contrastive learning. Results on a popular chest X-ray benchmark indicate that our method is competitive wih SOTA on different types of pathology, and even outperforms them on average in terms of two metrics (mean IoU and AUC-ROC). Source code will be released upon acceptance.
Boosting Few-Shot Learning with Disentangled Self-Supervised Learning and Meta-Learning for Medical Image Classification
Pachetti, Eva, Tsaftaris, Sotirios A., Colantonio, Sara
Background and objective: Employing deep learning models in critical domains such as medical imaging poses challenges associated with the limited availability of training data. We present a strategy for improving the performance and generalization capabilities of models trained in low-data regimes. Methods: The proposed method starts with a pre-training phase, where features learned in a self-supervised learning setting are disentangled to improve the robustness of the representations for downstream tasks. We then introduce a meta-fine-tuning step, leveraging related classes between meta-training and meta-testing phases but varying the granularity level. This approach aims to enhance the model's generalization capabilities by exposing it to more challenging classification tasks during meta-training and evaluating it on easier tasks but holding greater clinical relevance during meta-testing. We demonstrate the effectiveness of the proposed approach through a series of experiments exploring several backbones, as well as diverse pre-training and fine-tuning schemes, on two distinct medical tasks, i.e., classification of prostate cancer aggressiveness from MRI data and classification of breast cancer malignity from microscopic images. Results: Our results indicate that the proposed approach consistently yields superior performance w.r.t. ablation experiments, maintaining competitiveness even when a distribution shift between training and evaluation data occurs. Conclusion: Extensive experiments demonstrate the effectiveness and wide applicability of the proposed approach. We hope that this work will add another solution to the arsenal of addressing learning issues in data-scarce imaging domains.
Inference Stage Denoising for Undersampled MRI Reconstruction
Xue, Yuyang, Qin, Chen, Tsaftaris, Sotirios A.
Reconstruction of magnetic resonance imaging (MRI) data has been positively affected by deep learning. A key challenge remains: to improve generalisation to distribution shifts between the training and testing data. Most approaches aim to address this via inductive design or data augmentation. However, they can be affected by misleading data, e.g. random noise, and cases where the inference stage data do not match assumptions in the modelled shifts. In this work, by employing a conditional hyperparameter network, we eliminate the need of augmentation, yet maintain robust performance under various levels of Gaussian noise. We demonstrate that our model withstands various input noise levels while producing high-definition reconstructions during the test stage. Moreover, we present a hyperparameter sampling strategy that accelerates the convergence of training. Our proposed method achieves the highest accuracy and image quality in all settings compared to baseline methods.