Goto

Collaborating Authors

 Troncoso, Carmela


Attack-Aware Noise Calibration for Differential Privacy

arXiv.org Machine Learning

Differential privacy (DP) is a widely used approach for mitigating privacy risks when training machine learning models on sensitive data. DP mechanisms add noise during training to limit the risk of information leakage. The scale of the added noise is critical, as it determines the trade-off between privacy and utility. The standard practice is to select the noise scale in terms of a privacy budget parameter $\epsilon$. This parameter is in turn interpreted in terms of operational attack risk, such as accuracy, or sensitivity and specificity of inference attacks against the privacy of the data. We demonstrate that this two-step procedure of first calibrating the noise scale to a privacy budget $\epsilon$, and then translating $\epsilon$ to attack risk leads to overly conservative risk assessments and unnecessarily low utility. We propose methods to directly calibrate the noise scale to a desired attack risk level, bypassing the intermediate step of choosing $\epsilon$. For a target attack risk, our approach significantly decreases noise scale, leading to increased utility at the same level of privacy. We empirically demonstrate that calibrating noise to attack sensitivity/specificity, rather than $\epsilon$, when training privacy-preserving ML models substantially improves model accuracy for the same risk level. Our work provides a principled and practical way to improve the utility of privacy-preserving ML without compromising on privacy.


The Fundamental Limits of Least-Privilege Learning

arXiv.org Artificial Intelligence

The promise of least-privilege learning -- to find feature representations that are useful for a learning task but prevent inference of any sensitive information unrelated to this task -- is highly appealing. However, so far this concept has only been stated informally. It thus remains an open question whether and how we can achieve this goal. In this work, we provide the first formalisation of the least-privilege principle for machine learning and characterise its feasibility. We prove that there is a fundamental trade-off between a representation's utility for a given task and its leakage beyond the intended task: it is not possible to learn representations that have high utility for the intended task but, at the same time prevent inference of any attribute other than the task label itself. This trade-off holds under realistic assumptions on the data distribution and regardless of the technique used to learn the feature mappings that produce these representations. We empirically validate this result for a wide range of learning techniques, model architectures, and datasets.


SINBAD: Saliency-informed detection of breakage caused by ad blocking

arXiv.org Artificial Intelligence

Privacy-enhancing blocking tools based on filter-list rules tend to break legitimate functionality. Filter-list maintainers could benefit from automated breakage detection tools that allow them to proactively fix problematic rules before deploying them to millions of users. We introduce SINBAD, an automated breakage detector that improves the accuracy over the state of the art by 20%, and is the first to detect dynamic breakage and breakage caused by style-oriented filter rules. The success of SINBAD is rooted in three innovations: (1) the use of user-reported breakage issues in forums that enable the creation of a high-quality dataset for training in which only breakage that users perceive as an issue is included; (2) the use of 'web saliency' to automatically identify user-relevant regions of a website on which to prioritize automated interactions aimed at triggering breakage; and (3) the analysis of webpages via subtrees which enables fine-grained identification of problematic filter rules.


On the Conflict of Robustness and Learning in Collaborative Machine Learning

arXiv.org Artificial Intelligence

Collaborative Machine Learning (CML) allows participants to jointly train a machine learning model while keeping their training data private. In scenarios where privacy is a strong requirement, such as health-related applications, safety is also a primary concern. This means that privacy-preserving CML processes must produce models that output correct and reliable decisions \emph{even in the presence of potentially untrusted participants}. In response to this issue, researchers propose to use \textit{robust aggregators} that rely on metrics which help filter out malicious contributions that could compromise the training process. In this work, we formalize the landscape of robust aggregators in the literature. Our formalization allows us to show that existing robust aggregators cannot fulfill their goal: either they use distance-based metrics that cannot accurately identify targeted malicious updates; or propose methods whose success is in direct conflict with the ability of CML participants to learn from others and therefore cannot eliminate the risk of manipulation without preventing learning.


Transferable Adversarial Robustness for Categorical Data via Universal Robust Embeddings

arXiv.org Artificial Intelligence

Research on adversarial robustness is primarily focused on image and text data. Yet, many scenarios in which lack of robustness can result in serious risks, such as fraud detection, medical diagnosis, or recommender systems often do not rely on images or text but instead on tabular data. Adversarial robustness in tabular data poses two serious challenges. First, tabular datasets often contain categorical features, and therefore cannot be tackled directly with existing optimization procedures. Second, in the tabular domain, algorithms that are not based on deep networks are widely used and offer great performance, but algorithms to enhance robustness are tailored to neural networks (e.g. adversarial training). In this paper, we tackle both challenges. We present a method that allows us to train adversarially robust deep networks for tabular data and to transfer this robustness to other classifiers via universal robust embeddings tailored to categorical data. These embeddings, created using a bilevel alternating minimization framework, can be transferred to boosted trees or random forests making them robust without the need for adversarial training while preserving their high accuracy on tabular data. We show that our methods outperform existing techniques within a practical threat model suitable for tabular data.


On the (In)security of Peer-to-Peer Decentralized Machine Learning

arXiv.org Artificial Intelligence

In this work, we carry out the first, in-depth, privacy analysis of Decentralized Learning -- a collaborative machine learning framework aimed at addressing the main limitations of federated learning. We introduce a suite of novel attacks for both passive and active decentralized adversaries. We demonstrate that, contrary to what is claimed by decentralized learning proposers, decentralized learning does not offer any security advantage over federated learning. Rather, it increases the attack surface enabling any user in the system to perform privacy attacks such as gradient inversion, and even gain full control over honest users' local model. We also show that, given the state of the art in protections, privacy-preserving configurations of decentralized learning require fully connected networks, losing any practical advantage over the federated setup and therefore completely defeating the objective of the decentralized approach.


Universal Neural-Cracking-Machines: Self-Configurable Password Models from Auxiliary Data

arXiv.org Artificial Intelligence

We introduce the concept of "universal password model" -- a password model that, once pre-trained, can automatically adapt its guessing strategy based on the target system. To achieve this, the model does not need to access any plaintext passwords from the target credentials. Instead, it exploits users' auxiliary information, such as email addresses, as a proxy signal to predict the underlying password distribution. Specifically, the model uses deep learning to capture the correlation between the auxiliary data of a group of users (e.g., users of a web application) and their passwords. It then exploits those patterns to create a tailored password model for the target system at inference time. No further training steps, targeted data collection, or prior knowledge of the community's password distribution is required. Besides improving over current password strength estimation techniques and attacks, the model enables any end-user (e.g., system administrators) to autonomously generate tailored password models for their systems without the often unworkable requirements of collecting suitable training data and fitting the underlying machine learning model. Ultimately, our framework enables the democratization of well-calibrated password models to the community, addressing a major challenge in the deployment of password security solutions at scale.


Arbitrary Decisions are a Hidden Cost of Differentially Private Training

arXiv.org Artificial Intelligence

Mechanisms used in privacy-preserving machine learning often aim to guarantee differential privacy (DP) during model training. Practical DP-ensuring training methods use randomization when fitting model parameters to privacy-sensitive data (e.g., adding Gaussian noise to clipped gradients). We demonstrate that such randomization incurs predictive multiplicity: for a given input example, the output predicted by equally-private models depends on the randomness used in training. Thus, for a given input, the predicted output can vary drastically if a model is re-trained, even if the same training dataset is used. The predictive-multiplicity cost of DP training has not been studied, and is currently neither audited for nor communicated to model designers and stakeholders. We derive a bound on the number of re-trainings required to estimate predictive multiplicity reliably. We analyze--both theoretically and through extensive experiments--the predictive-multiplicity cost of three DP-ensuring algorithms: output perturbation, objective perturbation, and DP-SGD. We demonstrate that the degree of predictive multiplicity rises as the level of privacy increases, and is unevenly distributed across individuals and demographic groups in the data. Because randomness used to ensure DP during training explains predictions for some examples, our results highlight a fundamental challenge to the justifiability of decisions supported by differentially private models in high-stakes settings. We conclude that practitioners should audit the predictive multiplicity of their DP-ensuring algorithms before deploying them in applications of individual-level consequence.


Can Decentralized Learning be more robust than Federated Learning?

arXiv.org Artificial Intelligence

Decentralized Learning (DL) is a peer--to--peer learning approach that allows a group of users to jointly train a machine learning model. To ensure correctness, DL should be robust, i.e., Byzantine users must not be able to tamper with the result of the collaboration. In this paper, we introduce two \textit{new} attacks against DL where a Byzantine user can: make the network converge to an arbitrary model of their choice, and exclude an arbitrary user from the learning process. We demonstrate our attacks' efficiency against Self--Centered Clipping, the state--of--the--art robust DL protocol. Finally, we show that the capabilities decentralization grants to Byzantine users result in decentralized learning \emph{always} providing less robustness than federated learning.


Adversarial Robustness for Tabular Data through Cost and Utility Awareness

arXiv.org Artificial Intelligence

Many safety-critical applications of machine learning, such as fraud or abuse detection, use data in tabular domains. Adversarial examples can be particularly damaging for these applications. Yet, existing works on adversarial robustness primarily focus on machine-learning models in image and text domains. We argue that, due to the differences between tabular data and images or text, existing threat models are not suitable for tabular domains. These models do not capture that the costs of an attack could be more significant than imperceptibility, or that the adversary could assign different values to the utility obtained from deploying different adversarial examples. We demonstrate that, due to these differences, the attack and defense methods used for images and text cannot be directly applied to tabular settings. We address these issues by proposing new cost and utility-aware threat models that are tailored to the adversarial capabilities and constraints of attackers targeting tabular domains. We introduce a framework that enables us to design attack and defense mechanisms that result in models protected against cost and utility-aware adversaries, for example, adversaries constrained by a certain financial budget. We show that our approach is effective on three datasets corresponding to applications for which adversarial examples can have economic and social implications.