Goto

Collaborating Authors

 Trask, Nathaniel


Gaussian Variational Schemes on Bounded and Unbounded Domains

arXiv.org Artificial Intelligence

A machine-learnable variational scheme using Gaussian radial basis functions (GRBFs) is presented and used to approximate linear problems on bounded and unbounded domains. In contrast to standard mesh-free methods, which use GRBFs to discretize strong-form differential equations, this work exploits the relationship between integrals of GRBFs, their derivatives, and polynomial moments to produce exact quadrature formulae which enable weak-form expressions. Combined with trainable GRBF means and covariances, this leads to a flexible, generalized Galerkin variational framework which is applied in the infinite-domain setting where the scheme is conforming, as well as the bounded-domain setting where it is not. Error rates for the proposed GRBF scheme are derived in each case, and examples are presented demonstrating utility of this approach as a surrogate modeling technique.


Efficiently Parameterized Neural Metriplectic Systems

arXiv.org Artificial Intelligence

Metriplectic systems are learned from data in a way that scales quadratically in both the size of the state and the rank of the metriplectic data. Besides being provably energy conserving and entropy stable, the proposed approach comes with approximation results demonstrating its ability to accurately learn metriplectic dynamics from data as well as an error estimate indicating its potential for generalization to unseen timescales when approximation error is low. Examples are provided which illustrate performance in the presence of both full state information as well as when entropic variables are unknown, confirming that the proposed approach exhibits superior accuracy and scalability without compromising on model expressivity.


Graph Convolutions Enrich the Self-Attention in Transformers!

arXiv.org Artificial Intelligence

Transformers, renowned for their self-attention mechanism, have achieved state-of-the-art performance across various tasks in natural language processing, computer vision, time-series modeling, etc. However, one of the challenges with deep Transformer models is the oversmoothing problem, where representations across layers converge to indistinguishable values, leading to significant performance degradation. We interpret the original self-attention as a simple graph filter and redesign it from a graph signal processing (GSP) perspective. We propose graph-filter-based self-attention (GFSA) to learn a general yet effective one, whose complexity, however, is slightly larger than that of the original self-attention mechanism. We demonstrate that GFSA improves the performance of Transformers in various fields, including computer vision, natural language processing, graph pattern classification, speech recognition, and code classification.


Reversible and irreversible bracket-based dynamics for deep graph neural networks

arXiv.org Artificial Intelligence

Recent works have shown that physics-inspired architectures allow the training of deep graph neural networks (GNNs) without oversmoothing. The role of these physics is unclear, however, with successful examples of both reversible (e.g., Hamiltonian) and irreversible (e.g., diffusion) phenomena producing comparable results despite diametrically opposed mechanisms, and further complications arising due to empirical departures from mathematical theory. This work presents a series of novel GNN architectures based upon structure-preserving bracket-based dynamical systems, which are provably guaranteed to either conserve energy or generate positive dissipation with increasing depth. It is shown that the theoretically principled framework employed here allows for inherently explainable constructions, which contextualize departures from theory in current architectures and better elucidate the roles of reversibility and irreversibility in network performance.


Causal disentanglement of multimodal data

arXiv.org Machine Learning

Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.


Probabilistic partition of unity networks for high-dimensional regression problems

arXiv.org Artificial Intelligence

We explore the probabilistic partition of unity network (PPOU-Net) model in the context of high-dimensional regression problems and propose a general framework focusing on adaptive dimensionality reduction. With the proposed framework, the target function is approximated by a mixture of experts model on a low-dimensional manifold, where each cluster is associated with a local fixed-degree polynomial. We present a training strategy that leverages the expectation maximization (EM) algorithm. During the training, we alternate between (i) applying gradient descent to update the DNN coefficients; and (ii) using closed-form formulae derived from the EM algorithm to update the mixture of experts model parameters. Under the probabilistic formulation, step (ii) admits the form of embarrassingly parallelizable weighted least-squares solves. The PPOU-Nets consistently outperform the baseline fully-connected neural networks of comparable sizes in numerical experiments of various data dimensions. We also explore the proposed model in applications of quantum computing, where the PPOU-Nets act as surrogate models for cost landscapes associated with variational quantum circuits.


Unsupervised physics-informed disentanglement of multimodal data for high-throughput scientific discovery

arXiv.org Machine Learning

We introduce physics-informed multimodal autoencoders (PIMA) - a variational inference framework for discovering shared information in multimodal scientific datasets representative of high-throughput testing. Individual modalities are embedded into a shared latent space and fused through a product of experts formulation, enabling a Gaussian mixture prior to identify shared features. Sampling from clusters allows cross-modal generative modeling, with a mixture of expert decoder imposing inductive biases encoding prior scientific knowledge and imparting structured disentanglement of the latent space. This approach enables discovery of fingerprints which may be detected in high-dimensional heterogeneous datasets, avoiding traditional bottlenecks related to high-fidelity measurement and characterization. Motivated by accelerated co-design and optimization of materials manufacturing processes, a dataset of lattice metamaterials from metal additive manufacturing demonstrates accurate cross modal inference between images of mesoscale topology and mechanical stress-strain response.


Polynomial-Spline Neural Networks with Exact Integrals

arXiv.org Artificial Intelligence

Using neural networks to solve variational problems, and other scientific machine learning tasks, has been limited by a lack of consistency and an inability to exactly integrate expressions involving neural network architectures. We address these limitations by formulating a novel neural network architecture that combines a polynomial mixture-of-experts model with free knot B1-spline basis functions. Effectively, our architecture performs piecewise polynomial approximation on each cell of a trainable partition of unity. Our architecture exhibits both $h$- and $p$- refinement for regression problems at the convergence rates expected from approximation theory, allowing for consistency in solving variational problems. Moreover, this architecture, its moments, and its partial derivatives can all be integrated exactly, obviating a reliance on sampling or quadrature and enabling error-free computation of variational forms. We demonstrate the success of our network on a range of regression and variational problems that illustrate the consistency and exact integrability of our network architecture.


GMLS-Nets: A framework for learning from unstructured data

arXiv.org Machine Learning

Data fields sampled on irregularly spaced points arise in many applications in the sciences and engineering. For regular grids, Convolutional Neural Networks (CNNs) have been successfully used to gaining benefits from weight sharing and invariances. We generalize CNNs by introducing methods for data on unstructured point clouds based on Generalized Moving Least Squares (GMLS). GMLS is a non-parametric technique for estimating linear bounded functionals from scattered data, and has recently been used in the literature for solving partial differential equations. By parameterizing the GMLS estimator, we obtain learning methods for operators with unstructured stencils. In GMLS-Nets the necessary calculations are local, readily parallelizable, and the estimator is supported by a rigorous approximation theory. We show how the framework may be used for unstructured physical data sets to perform functional regression to identify associated differential operators and to regress quantities of interest. The results suggest the architectures to be an attractive foundation for data-driven model development in scientific machine learning applications.