Goto

Collaborating Authors

 Togelius, Julian


The Procedural Content Generation Benchmark: An Open-source Testbed for Generative Challenges in Games

arXiv.org Artificial Intelligence

This paper introduces the Procedural Content Generation Benchmark for evaluating generative algorithms on different game content creation tasks. The benchmark comes with 12 game-related problems with multiple variants on each problem. Problems vary from creating levels of different kinds to creating rule sets for simple arcade games. Each problem has its own content representation, control parameters, and evaluation metrics for quality, diversity, and controllability. This benchmark is intended as a first step towards a standardized way of comparing generative algorithms. We use the benchmark to score three baseline algorithms: a random generator, an evolution strategy, and a genetic algorithm. Results show that some problems are easier to solve than others, as well as the impact the chosen objective has on quality, diversity, and controllability of the generated artifacts.


Word2Minecraft: Generating 3D Game Levels through Large Language Models

arXiv.org Artificial Intelligence

We present Word2Minecraft, a system that leverages large language models to generate playable game levels in Minecraft based on structured stories. The system transforms narrative elements-such as protagonist goals, antagonist challenges, and environmental settings-into game levels with both spatial and gameplay constraints. We introduce a flexible framework that allows for the customization of story complexity, enabling dynamic level generation. The system employs a scaling algorithm to maintain spatial consistency while adapting key game elements. We evaluate Word2Minecraft using both metric-based and human-based methods. Our results show that GPT-4-Turbo outperforms GPT-4o-Mini in most areas, including story coherence and objective enjoyment, while the latter excels in aesthetic appeal. We also demonstrate the system' s ability to generate levels with high map enjoyment, offering a promising step forward in the intersection of story generation and game design. We open-source the code at https://github.com/JMZ-kk/Word2Minecraft/tree/word2mc_v0


PCGRLLM: Large Language Model-Driven Reward Design for Procedural Content Generation Reinforcement Learning

arXiv.org Artificial Intelligence

Reward design plays a pivotal role in the training of game AIs, requiring substantial domain-specific knowledge and human effort. In recent years, several studies have explored reward generation for training game agents and controlling robots using large language models (LLMs). In the content generation literature, there has been early work on generating reward functions for reinforcement learning agent generators. This work introduces PCGRLLM, an extended architecture based on earlier work, which employs a feedback mechanism and several reasoning-based prompt engineering techniques. We evaluate the proposed method on a story-to-reward generation task in a two-dimensional environment using two state-of-the-art LLMs, demonstrating the generalizability of our approach. Our experiments provide insightful evaluations that demonstrate the capabilities of LLMs essential for content generation tasks. The results highlight significant performance improvements of 415% and 40% respectively, depending on the zero-shot capabilities of the language model. Our work demonstrates the potential to reduce human dependency in game AI development, while supporting and enhancing creative processes.


Amorphous Fortress Online: Collaboratively Designing Open-Ended Multi-Agent AI and Game Environments

arXiv.org Artificial Intelligence

This work introduces Amorphous Fortress Online -- a web-based platform where users can design petri-dish-like environments and games consisting of multi-agent AI characters. Users can play, create, and share artificial life and game environments made up of microscopic but transparent finite-state machine agents that interact with each other. The website features multiple interactive editors and accessible settings to view the multi-agent interactions directly from the browser. This system serves to provide a database of thematically diverse AI and game environments that use the emergent behaviors of simple AI agents.


Human-like Bots for Tactical Shooters Using Compute-Efficient Sensors

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has enabled agents to master complex video games, from first-person shooters like Counter-Strike to real-time strategy games such as StarCraft II and racing games like Gran Turismo. While these achievements are notable, applying these AI methods in commercial video game production remains challenging due to computational constraints. In commercial scenarios, the majority of computational resources are allocated to 3D rendering, leaving limited capacity for AI methods, which often demand high computational power, particularly those relying on pixel-based sensors. Moreover, the gaming industry prioritizes creating human-like behavior in AI agents to enhance player experience, unlike academic models that focus on maximizing game performance. This paper introduces a novel methodology for training neural networks via imitation learning to play a complex, commercial-standard, VALORANT-like 2v2 tactical shooter game, requiring only modest CPU hardware during inference. Our approach leverages an innovative, pixel-free perception architecture using a small set of ray-cast sensors, which capture essential spatial information efficiently. These sensors allow AI to perform competently without the computational overhead of traditional methods. Models are trained to mimic human behavior using supervised learning on human trajectory data, resulting in realistic and engaging AI agents. Human evaluation tests confirm that our AI agents provide human-like gameplay experiences while operating efficiently under computational constraints. This offers a significant advancement in AI model development for tactical shooter games and possibly other genres.


TraSCE: Trajectory Steering for Concept Erasure

arXiv.org Artificial Intelligence

Recent advancements in text-to-image diffusion models have brought them to the public spotlight, becoming widely accessible and embraced by everyday users. However, these models have been shown to generate harmful content such as not-safe-for-work (NSFW) images. While approaches have been proposed to erase such abstract concepts from the models, jail-breaking techniques have succeeded in bypassing such safety measures. In this paper, we propose TraSCE, an approach to guide the diffusion trajectory away from generating harmful content. Our approach is based on negative prompting, but as we show in this paper, conventional negative prompting is not a complete solution and can easily be bypassed in some corner cases. To address this issue, we first propose a modification of conventional negative prompting. Furthermore, we introduce a localized loss-based guidance that enhances the modified negative prompting technique by steering the diffusion trajectory. We demonstrate that our proposed method achieves state-of-the-art results on various benchmarks in removing harmful content including ones proposed by red teams; and erasing artistic styles and objects. Our proposed approach does not require any training, weight modifications, or training data (both image or prompt), making it easier for model owners to erase new concepts.


Classifier-Free Guidance inside the Attraction Basin May Cause Memorization

arXiv.org Artificial Intelligence

Diffusion models are prone to exactly reproduce images from the training data. This exact reproduction of the training data is concerning as it can lead to copyright infringement and/or leakage of privacy-sensitive information. In this paper, we present a novel way to understand the memorization phenomenon, and propose a simple yet effective approach to mitigate it. We argue that memorization occurs because of an attraction basin in the denoising process which steers the diffusion trajectory towards a memorized image. However, this can be mitigated by guiding the diffusion trajectory away from the attraction basin by not applying classifier-free guidance until an ideal transition point occurs from which classifier-free guidance is applied. This leads to the generation of non-memorized images that are high in image quality and well-aligned with the conditioning mechanism. To further improve on this, we present a new guidance technique, \emph{opposite guidance}, that escapes the attraction basin sooner in the denoising process. We demonstrate the existence of attraction basins in various scenarios in which memorization occurs, and we show that our proposed approach successfully mitigates memorization.


GameTraversalBenchmark: Evaluating Planning Abilities Of Large Language Models Through Traversing 2D Game Maps

arXiv.org Artificial Intelligence

Large language models (LLMs) have recently demonstrated great success in generating and understanding natural language. While they have also shown potential beyond the domain of natural language, it remains an open question as to what extent and in which way these LLMs can plan. We investigate their planning capabilities by proposing GameTraversalBenchmark (GTB), a benchmark consisting of diverse 2D grid-based game maps. An LLM succeeds if it can traverse through given objectives, with a minimum number of steps and a minimum number of generation errors. We evaluate a number of LLMs on GTB and found that GPT-4-Turbo achieved the highest score of 44.97% on GTB\_Score (GTBS), a composite score that combines the three above criteria. Furthermore, we preliminarily test large reasoning models, namely o1, which scores $67.84\%$ on GTBS, indicating that the benchmark remains challenging for current models. Code, data, and documentation are available at https://github.com/umair-nasir14/Game-Traversal-Benchmark.


Making New Connections: LLMs as Puzzle Generators for The New York Times' Connections Word Game

arXiv.org Artificial Intelligence

The Connections puzzle is a word association game published daily by The New York Times (NYT). In this game, players are asked to find groups of four words that are connected by a common theme. While solving a given Connections puzzle requires both semantic knowledge and abstract reasoning, generating novel puzzles additionally requires a form of metacognition: generators must be able to accurately model the downstream reasoning of potential solvers. In this paper, we investigate the ability of the GPT family of Large Language Models (LLMs) to generate challenging and creative word games for human players. We start with an analysis of the word game Connections and the unique challenges it poses as a Procedural Content Generation (PCG) domain. We then propose a method for generating Connections puzzles using LLMs by adapting a Tree of Thoughts (ToT) prompting approach. We evaluate this method by conducting a user study, asking human players to compare AI-generated puzzles against published Connections puzzles. Our findings show that LLMs are capable puzzle creators, and can generate diverse sets of enjoyable, challenging, and creative Connections puzzles as judged by human users.


GAVEL: Generating Games Via Evolution and Language Models

arXiv.org Artificial Intelligence

Automatically generating novel and interesting games is a complex task. Challenges include representing game rules in a computationally workable form, searching through the large space of potential games under most such representations, and accurately evaluating the originality and quality of previously unseen games. Prior work in automated game generation has largely focused on relatively restricted rule representations and relied on domain-specific heuristics. In this work, we explore the generation of novel games in the comparatively expansive Ludii game description language, which encodes the rules of over 1000 board games in a variety of styles and modes of play. We draw inspiration from recent advances in large language models and evolutionary computation in order to train a model that intelligently mutates and recombines games and mechanics expressed as code. We demonstrate both quantitatively and qualitatively that our approach is capable of generating new and interesting games, including in regions of the potential rules space not covered by existing games in the Ludii dataset. A sample of the generated games are available to play online through the Ludii portal.