Goto

Collaborating Authors

 Thekumparampil, Kiran Koshy


Comparing Few to Rank Many: Active Human Preference Learning using Randomized Frank-Wolfe

arXiv.org Machine Learning

We study learning of human preferences from a limited comparison feedback. This task is ubiquitous in machine learning. Its applications such as reinforcement learning from human feedback, have been transformational. We formulate this problem as learning a Plackett-Luce model over a universe of $N$ choices from $K$-way comparison feedback, where typically $K \ll N$. Our solution is the D-optimal design for the Plackett-Luce objective. The design defines a data logging policy that elicits comparison feedback for a small collection of optimally chosen points from all ${N \choose K}$ feasible subsets. The main algorithmic challenge in this work is that even fast methods for solving D-optimal designs would have $O({N \choose K})$ time complexity. To address this issue, we propose a randomized Frank-Wolfe (FW) algorithm that solves the linear maximization sub-problems in the FW method on randomly chosen variables. We analyze the algorithm, and evaluate it empirically on synthetic and open-source NLP datasets.


A Sinkhorn-type Algorithm for Constrained Optimal Transport

arXiv.org Artificial Intelligence

Entropic optimal transport (OT) and the Sinkhorn algorithm have made it practical for machine learning practitioners to perform the fundamental task of calculating transport distance between statistical distributions. In this work, we focus on a general class of OT problems under a combination of equality and inequality constraints. We derive the corresponding entropy regularization formulation and introduce a Sinkhorn-type algorithm for such constrained OT problems supported by theoretical guarantees. We first bound the approximation error when solving the problem through entropic regularization, which reduces exponentially with the increase of the regularization parameter. Furthermore, we prove a sublinear first-order convergence rate of the proposed Sinkhorn-type algorithm in the dual space by characterizing the optimization procedure with a Lyapunov function. To achieve fast and higher-order convergence under weak entropy regularization, we augment the Sinkhorn-type algorithm with dynamic regularization scheduling and second-order acceleration. Overall, this work systematically combines recent theoretical and numerical advances in entropic optimal transport with the constrained case, allowing practitioners to derive approximate transport plans in complex scenarios.


Accelerating Sinkhorn Algorithm with Sparse Newton Iterations

arXiv.org Artificial Intelligence

Computing the optimal transport distance between statistical distributions is a fundamental task in machine learning. One remarkable recent advancement is entropic regularization and the Sinkhorn algorithm, which utilizes only matrix scaling and guarantees an approximated solution with near-linear runtime. Despite the success of the Sinkhorn algorithm, its runtime may still be slow due to the potentially large number of iterations needed for convergence. To achieve possibly super-exponential convergence, we present Sinkhorn-Newton-Sparse (SNS), an extension to the Sinkhorn algorithm, by introducing early stopping for the matrix scaling steps and a second stage featuring a Newton-type subroutine. Adopting the variational viewpoint that the Sinkhorn algorithm maximizes a concave Lyapunov potential, we offer the insight that the Hessian matrix of the potential function is approximately sparse. Sparsification of the Hessian results in a fast $O(n^2)$ per-iteration complexity, the same as the Sinkhorn algorithm. In terms of total iteration count, we observe that the SNS algorithm converges orders of magnitude faster across a wide range of practical cases, including optimal transportation between empirical distributions and calculating the Wasserstein $W_1, W_2$ distance of discretized densities. The empirical performance is corroborated by a rigorous bound on the approximate sparsity of the Hessian matrix.


Pretrained deep models outperform GBDTs in Learning-To-Rank under label scarcity

arXiv.org Artificial Intelligence

While deep learning (DL) models are state-of-the-art in text and image domains, they have not yet consistently outperformed Gradient Boosted Decision Trees (GBDTs) on tabular Learning-To-Rank (LTR) problems. Most of the recent performance gains attained by DL models in text and image tasks have used unsupervised pretraining, which exploits orders of magnitude more unlabeled data than labeled data. To the best of our knowledge, unsupervised pretraining has not been applied to the LTR problem, which often produces vast amounts of unlabeled data. In this work, we study whether unsupervised pretraining of deep models can improve LTR performance over GBDTs and other non-pretrained models. By incorporating simple design choices--including SimCLR-Rank, an LTR-specific pretraining loss--we produce pretrained deep learning models that consistently (across datasets) outperform GBDTs (and other non-pretrained rankers) in the case where there is more unlabeled data than labeled data. This performance improvement occurs not only on average but also on outlier queries. We base our empirical conclusions off of experiments on (1) public benchmark tabular LTR datasets, and (2) a large industry-scale proprietary ranking dataset. Code is provided at https://anonymous.4open.science/r/ltr-pretrain-0DAD/README.md.


DPZero: Dimension-Independent and Differentially Private Zeroth-Order Optimization

arXiv.org Machine Learning

The widespread practice of fine-tuning pretrained large language models (LLMs) on domain-specific data faces two major challenges in memory and privacy. First, as the size of LLMs continue to grow, encompassing billions of parameters, the memory demands of gradient-based training methods via backpropagation become prohibitively high. Second, given the tendency of LLMs to memorize and disclose sensitive training data, the privacy of fine-tuning data must be respected. To this end, we explore the potential of zeroth-order methods in differentially private optimization for fine-tuning LLMs. Zeroth-order methods, which rely solely on forward passes, substantially reduce memory consumption during training. However, directly combining them with standard differential privacy mechanism poses dimension-dependent complexity. To bridge the gap, we introduce DPZero, a novel differentially private zeroth-order algorithm with nearly dimension-independent rates. Our theoretical analysis reveals that its complexity hinges primarily on the problem's intrinsic dimension and exhibits only a logarithmic dependence on the ambient dimension. This renders DPZero a highly practical option for real-world LLMs deployments.


Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax Optimization

arXiv.org Machine Learning

We study the bilinearly coupled minimax problem: $\min_{x} \max_{y} f(x) + y^\top A x - h(y)$, where $f$ and $h$ are both strongly convex smooth functions and admit first-order gradient oracles. Surprisingly, no known first-order algorithms have hitherto achieved the lower complexity bound of $\Omega((\sqrt{\frac{L_x}{\mu_x}} + \frac{\|A\|}{\sqrt{\mu_x \mu_y}} + \sqrt{\frac{L_y}{\mu_y}}) \log(\frac1{\varepsilon}))$ for solving this problem up to an $\varepsilon$ primal-dual gap in the general parameter regime, where $L_x, L_y,\mu_x,\mu_y$ are the corresponding smoothness and strongly convexity constants. We close this gap by devising the first optimal algorithm, the Lifted Primal-Dual (LPD) method. Our method lifts the objective into an extended form that allows both the smooth terms and the bilinear term to be handled optimally and seamlessly with the same primal-dual framework. Besides optimality, our method yields a desirably simple single-loop algorithm that uses only one gradient oracle call per iteration. Moreover, when $f$ is just convex, the same algorithm applied to a smoothed objective achieves the nearly optimal iteration complexity. We also provide a direct single-loop algorithm, using the LPD method, that achieves the iteration complexity of $O(\sqrt{\frac{L_x}{\varepsilon}} + \frac{\|A\|}{\sqrt{\mu_y \varepsilon}} + \sqrt{\frac{L_y}{\varepsilon}})$. Numerical experiments on quadratic minimax problems and policy evaluation problems further demonstrate the fast convergence of our algorithm in practice.


Sample Efficient Linear Meta-Learning by Alternating Minimization

arXiv.org Artificial Intelligence

Meta-learning synthesizes and leverages the knowledge from a given set of tasks to rapidly learn new tasks using very little data. Meta-learning of linear regression tasks, where the regressors lie in a low-dimensional subspace, is an extensively-studied fundamental problem in this domain. However, existing results either guarantee highly suboptimal estimation errors, or require $\Omega(d)$ samples per task (where $d$ is the data dimensionality) thus providing little gain over separately learning each task. In this work, we study a simple alternating minimization method (MLLAM), which alternately learns the low-dimensional subspace and the regressors. We show that, for a constant subspace dimension MLLAM obtains nearly-optimal estimation error, despite requiring only $\Omega(\log d)$ samples per task. However, the number of samples required per task grows logarithmically with the number of tasks. To remedy this in the low-noise regime, we propose a novel task subset selection scheme that ensures the same strong statistical guarantee as MLLAM, even with bounded number of samples per task for arbitrarily large number of tasks.


Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method

arXiv.org Machine Learning

We consider the classical setting of optimizing a nonsmooth Lipschitz continuous convex function over a convex constraint set, when having access to a (stochastic) first-order oracle (FO) for the function and a projection oracle (PO) for the constraint set. It is well known that to achieve $\epsilon$-suboptimality in high-dimensions, $\Theta(\epsilon^{-2})$ FO calls are necessary. This is achieved by the projected subgradient method (PGD). However, PGD also entails $O(\epsilon^{-2})$ PO calls, which may be computationally costlier than FO calls (e.g. nuclear norm constraints). Improving this PO calls complexity of PGD is largely unexplored, despite the fundamental nature of this problem and extensive literature. We present first such improvement. This only requires a mild assumption that the objective function, when extended to a slightly larger neighborhood of the constraint set, still remains Lipschitz and accessible via FO. In particular, we introduce MOPES method, which carefully combines Moreau-Yosida smoothing and accelerated first-order schemes. This is guaranteed to find a feasible $\epsilon$-suboptimal solution using only $O(\epsilon^{-1})$ PO calls and optimal $O(\epsilon^{-2})$ FO calls. Further, instead of a PO if we only have a linear minimization oracle (LMO, a la Frank-Wolfe) to access the constraint set, an extension of our method, MOLES, finds a feasible $\epsilon$-suboptimal solution using $O(\epsilon^{-2})$ LMO calls and FO calls---both match known lower bounds, resolving a question left open since White (1993). Our experiments confirm that these methods achieve significant speedups over the state-of-the-art, for a problem with costly PO and LMO calls.


Efficient Algorithms for Smooth Minimax Optimization

arXiv.org Machine Learning

This paper studies first order methods for solving smooth minimax optimization problems $\min_x \max_y g(x,y)$ where $g(\cdot,\cdot)$ is smooth and $g(x,\cdot)$ is concave for each $x$. In terms of $g(\cdot,y)$, we consider two settings -- strongly convex and nonconvex -- and improve upon the best known rates in both. For strongly-convex $g(\cdot, y),\ \forall y$, we propose a new algorithm combining Mirror-Prox and Nesterov's AGD, and show that it can find global optimum in $\tilde{O}(1/k^2)$ iterations, improving over current state-of-the-art rate of $O(1/k)$. We use this result along with an inexact proximal point method to provide $\tilde{O}(1/k^{1/3})$ rate for finding stationary points in the nonconvex setting where $g(\cdot, y)$ can be nonconvex. This improves over current best-known rate of $O(1/k^{1/5})$. Finally, we instantiate our result for finite nonconvex minimax problems, i.e., $\min_x \max_{1\leq i\leq m} f_i(x)$, with nonconvex $f_i(\cdot)$, to obtain convergence rate of $O(m(\log m)^{3/2}/k^{1/3})$ total gradient evaluations for finding a stationary point.


InfoGAN-CR: Disentangling Generative Adversarial Networks with Contrastive Regularizers

arXiv.org Machine Learning

Training disentangled representations with generative adversarial networks (GANs) remains challenging, with leading implementations failing to achieve comparable performance to Variational Autoencoder (VAE)-based methods. After $\beta$-VAE and FactorVAE discovered that regularizing the total correlation of the latent vectors promotes disentanglement, numerous VAE-based methods emerged. Such a discovery has yet to be made for GANs, and reported disentanglement scores of GAN-based methods are significantly inferior to VAE-based methods on benchmark datasets. To this end, we propose a novel regularizer that achieves higher disentanglement scores than state-of-the-art VAE- and GAN-based approaches. The proposed contrastive regularizer is inspired by a natural notion of disentanglement: latent traversal. Latent traversal refers to generating images by varying one latent code while fixing the rest. We turn this intuition into a regularizer by adding a discriminator that detects how the latent codes are coupled together, in paired examples. Numerical experiments show that this approach improves upon competing state-of-the-art approaches on benchmark datasets.