Goto

Collaborating Authors

 Tewari, Ambuj


Operator Learning: A Statistical Perspective

arXiv.org Machine Learning

Operator learning has emerged as a powerful tool in scientific computing for approximating mappings between infinite-dimensional function spaces. A primary application of operator learning is the development of surrogate models for the solution operators of partial differential equations (PDEs). These methods can also be used to develop black-box simulators to model system behavior from experimental data, even without a known mathematical model. In this article, we begin by formalizing operator learning as a function-to-function regression problem and review some recent developments in the field. We also discuss PDE-specific operator learning, outlining strategies for incorporating physical and mathematical constraints into architecture design and training processes. Finally, we end by highlighting key future directions such as active data collection and the development of rigorous uncertainty quantification frameworks.


Learning to Partially Defer for Sequences

arXiv.org Machine Learning

In the Learning to Defer (L2D) framework, a prediction model can either make a prediction or defer it to an expert, as determined by a rejector. Current L2D methods train the rejector to decide whether to reject the entire prediction, which is not desirable when the model predicts long sequences. We present an L2D setting for sequence outputs where the system can defer specific outputs of the whole model prediction to an expert in an effort to interleave the expert and machine throughout the prediction. We propose two types of model-based post-hoc rejectors for pre-trained predictors: a token-level rejector, which defers specific token predictions to experts with next token prediction capabilities, and a one-time rejector for experts without such abilities, which defers the remaining sequence from a specific point onward. In the experiments, we also empirically demonstrate that such granular deferrals achieve better cost-accuracy tradeoffs than whole deferrals on Traveling salesman solvers and News summarization models.


Who Wrote This? Zero-Shot Statistical Tests for LLM-Generated Text Detection using Finite Sample Concentration Inequalities

arXiv.org Machine Learning

Verifying the provenance of content is crucial to the function of many organizations, e.g., educational institutions, social media platforms, firms, etc. This problem is becoming increasingly difficult as text generated by Large Language Models (LLMs) becomes almost indistinguishable from human-generated content. In addition, many institutions utilize in-house LLMs and want to ensure that external, non-sanctioned LLMs do not produce content within the institution. In this paper, we answer the following question: Given a piece of text, can we identify whether it was produced by LLM $A$ or $B$ (where $B$ can be a human)? We model LLM-generated text as a sequential stochastic process with complete dependence on history and design zero-shot statistical tests to distinguish between (i) the text generated by two different sets of LLMs $A$ (in-house) and $B$ (non-sanctioned) and also (ii) LLM-generated and human-generated texts. We prove that the type I and type II errors for our tests decrease exponentially in the text length. In designing our tests, we derive concentration inequalities on the difference between log-perplexity and the average entropy of the string under $A$. Specifically, for a given string, we demonstrate that if the string is generated by $A$, the log-perplexity of the string under $A$ converges to the average entropy of the string under $A$, except with an exponentially small probability in string length. We also show that if $B$ generates the text, except with an exponentially small probability in string length, the log-perplexity of the string under $A$ converges to the average cross-entropy of $B$ and $A$. Lastly, we present preliminary experimental results to support our theoretical results. By enabling guaranteed (with high probability) finding of the origin of harmful LLM-generated text with arbitrary size, we can help fight misinformation.


Generation through the lens of learning theory

arXiv.org Machine Learning

Over the past 50 years, predictive machine learning has been a cornerstone for both theorists and practitioners. Predictive tasks like classification and regression have been extensively studied, in both theory and practice, due to their applications to face recognition, autonomous vehicles, fraud detection, recommendation systems, etc. Recently, however, a new paradigm of machine learning has emerged: generation. Unlike predictive models, which focus on making accurate predictions of the true label given examples, generative models aim to create new examples based on observed data. For example, in language modeling, the goal might be to generate coherent text in response to a prompt, while in drug development, one might want to generate candidate molecules. In fact, generative models have already been applied to these tasks and others [Zhao et al., 2023, Jumper et al., 2021]. The vast potential of generative machine learning has spurred a surge of research across diverse fields like natural language processing [Wolf et al., 2020], computer vision [Khan et al., 2022], and computational chemistry/biology [Vanhaelen et al., 2020]. Despite this widespread adoption, the theoretical foundations of generative machine learning lags far behind its predictive counterpart. While prediction has been extensively studied by learning theorists through frameworks like PAC and online learning [Shalev-Shwartz and Ben-David, 2014, Mohri et al., 2012, Cesa-Bianchi and Lugosi, 2006], generative machine learning has, for the most, part


On the Benefits of Active Data Collection in Operator Learning

arXiv.org Machine Learning

We investigate active data collection strategies for operator learning when the target operator is linear and the input functions are drawn from a mean-zero stochastic process with continuous covariance kernels. With an active data collection strategy, we establish an error convergence rate in terms of the decay rate of the eigenvalues of the covariance kernel. Thus, with sufficiently rapid eigenvalue decay of the covariance kernels, arbitrarily fast error convergence rates can be achieved. This contrasts with the passive (i.i.d.) data collection strategies, where the convergence rate is never faster than $\sim n^{-1}$. In fact, for our setting, we establish a \emph{non-vanishing} lower bound for any passive data collection strategy, regardless of the eigenvalues decay rate of the covariance kernel. Overall, our results show the benefit of active over passive data collection strategies in operator learning.


Near Optimal Pure Exploration in Logistic Bandits

arXiv.org Machine Learning

Bandit algorithms have garnered significant attention due to their practical applications in real-world scenarios. However, beyond simple settings such as multi-arm or linear bandits, optimal algorithms remain scarce. Notably, no optimal solution exists for pure exploration problems in the context of generalized linear model (GLM) bandits. In this paper, we narrow this gap and develop the first track-and-stop algorithm for general pure exploration problems under the logistic bandit called logistic track-and-stop (Log-TS). Log-TS is an efficient algorithm that asymptotically matches an approximation for the instance-specific lower bound of the expected sample complexity up to a logarithmic factor.


Learning Infinite-Horizon Average-Reward Linear Mixture MDPs of Bounded Span

arXiv.org Artificial Intelligence

This paper proposes a computationally tractable algorithm for learning infinite-horizon average-reward linear mixture Markov decision processes (MDPs) under the Bellman optimality condition. Our algorithm for linear mixture MDPs achieves a nearly minimax optimal regret upper bound of $\widetilde{\mathcal{O}}(d\sqrt{\mathrm{sp}(v^*)T})$ over $T$ time steps where $\mathrm{sp}(v^*)$ is the span of the optimal bias function $v^*$ and $d$ is the dimension of the feature mapping. Our algorithm applies the recently developed technique of running value iteration on a discounted-reward MDP approximation with clipping by the span. We prove that the value iteration procedure, even with the clipping operation, converges. Moreover, we show that the associated variance term due to random transitions can be bounded even under clipping. Combined with the weighted ridge regression-based parameter estimation scheme, this leads to the nearly minimax optimal regret guarantee.


Contextual Bandits with Arm Request Costs and Delays

arXiv.org Machine Learning

We introduce a novel extension of the contextual bandit problem, where new sets of arms can be requested with stochastic time delays and associated costs. In this setting, the learner can select multiple arms from a decision set, with each selection taking one unit of time. The problem is framed as a special case of semi-Markov decision processes (SMDPs). The arm contexts, request times, and costs are assumed to follow an unknown distribution. We consider the regret of an online learning algorithm with respect to the optimal policy that achieves the maximum average reward. By leveraging the Bellman optimality equation, we design algorithms that can effectively select arms and determine the appropriate time to request new arms, thereby minimizing their regret. Under the realizability assumption, we analyze the proposed algorithms and demonstrate that their regret upper bounds align with established results in the contextual bandit literature. We validate the algorithms through experiments on simulated data and a movie recommendation dataset, showing that their performance is consistent with theoretical analyses.


Leveraging Offline Data in Linear Latent Bandits

arXiv.org Machine Learning

Sequential decision-making domains such as recommender systems, healthcare and education often have unobserved heterogeneity in the population that can be modeled using latent bandits $-$ a framework where an unobserved latent state determines the model for a trajectory. While the latent bandit framework is compelling, the extent of its generality is unclear. We first address this by establishing a de Finetti theorem for decision processes, and show that $\textit{every}$ exchangeable and coherent stateless decision process is a latent bandit. The latent bandit framework lends itself particularly well to online learning with offline datasets, a problem of growing interest in sequential decision-making. One can leverage offline latent bandit data to learn a complex model for each latent state, so that an agent can simply learn the latent state online to act optimally. We focus on a linear model for a latent bandit with $d_A$-dimensional actions, where the latent states lie in an unknown $d_K$-dimensional subspace for $d_K \ll d_A$. We present SOLD, a novel principled method to learn this subspace from short offline trajectories with guarantees. We then provide two methods to leverage this subspace online: LOCAL-UCB and ProBALL-UCB. We demonstrate that LOCAL-UCB enjoys $\tilde O(\min(d_A\sqrt{T}, d_K\sqrt{T}(1+\sqrt{d_AT/d_KN})))$ regret guarantees, where the effective dimension is lower when the size $N$ of the offline dataset is larger. ProBALL-UCB enjoys a slightly weaker guarantee, but is more practical and computationally efficient. Finally, we establish the efficacy of our methods using experiments on both synthetic data and real-life movie recommendation data from MovieLens.


Conformalized Late Fusion Multi-View Learning

arXiv.org Machine Learning

Uncertainty quantification for multi-view learning is motivated by the increasing use of multi-view data in scientific problems. A common variant of multi-view learning is late fusion: train separate predictors on individual views and combine them after single-view predictions are available. Existing methods for uncertainty quantification for late fusion often rely on undesirable distributional assumptions for validity. Conformal prediction is one approach that avoids such distributional assumptions. However, naively applying conformal prediction to late-stage fusion pipelines often produces overly conservative and uninformative prediction regions, limiting its downstream utility. We propose a novel methodology, Multi-View Conformal Prediction (MVCP), where conformal prediction is instead performed separately on the single-view predictors and only fused subsequently. Our framework extends the standard scalar formulation of a score function to a multivariate score that produces more efficient downstream prediction regions in both classification and regression settings. We then demonstrate that such improvements can be realized in methods built atop conformalized regressors, specifically in robust predict-then-optimize pipelines.