Goto

Collaborating Authors

 Tao, Wei


MAGIS: LLM-Based Multi-Agent Framework for GitHub Issue Resolution

arXiv.org Artificial Intelligence

In software development, resolving the emergent issues within GitHub repositories is a complex challenge that involves not only the incorporation of new code but also the maintenance of existing code. Large Language Models (LLMs) have shown promise in code generation but face difficulties in resolving Github issues, particularly at the repository level. To overcome this challenge, we empirically study the reason why LLMs fail to resolve GitHub issues and analyze the major factors. Motivated by the empirical findings, we propose a novel LLM-based Multi-Agent framework for GitHub Issue reSolution, MAGIS, consisting of four agents customized for software evolution: Manager, Repository Custodian, Developer, and Quality Assurance Engineer agents. This framework leverages the collaboration of various agents in the planning and coding process to unlock the potential of LLMs to resolve GitHub issues. In experiments, we employ the SWE-bench benchmark to compare MAGIS with popular LLMs, including GPT-3.5, GPT-4, and Claude-2. MAGIS can resolve 13.94% GitHub issues, significantly outperforming the baselines. Specifically, MAGIS achieves an eight-fold increase in resolved ratio over the direct application of GPT-4, the advanced LLM.


Value-Driven Mixed-Precision Quantization for Patch-Based Inference on Microcontrollers

arXiv.org Artificial Intelligence

Deploying neural networks on microcontroller units (MCUs) presents substantial challenges due to their constrained computation and memory resources. Previous researches have explored patch-based inference as a strategy to conserve memory without sacrificing model accuracy. However, this technique suffers from severe redundant computation overhead, leading to a substantial increase in execution latency. A feasible solution to address this issue is mixed-precision quantization, but it faces the challenges of accuracy degradation and a time-consuming search time. In this paper, we propose QuantMCU, a novel patch-based inference method that utilizes value-driven mixed-precision quantization to reduce redundant computation. We first utilize value-driven patch classification (VDPC) to maintain the model accuracy. VDPC classifies patches into two classes based on whether they contain outlier values. For patches containing outlier values, we apply 8-bit quantization to the feature maps on the dataflow branches that follow. In addition, for patches without outlier values, we utilize value-driven quantization search (VDQS) on the feature maps of their following dataflow branches to reduce search time. Specifically, VDQS introduces a novel quantization search metric that takes into account both computation and accuracy, and it employs entropy as an accuracy representation to avoid additional training. VDQS also adopts an iterative approach to determine the bitwidth of each feature map to further accelerate the search process. Experimental results on real-world MCU devices show that QuantMCU can reduce computation by 2.2x on average while maintaining comparable model accuracy compared to the state-of-the-art patch-based inference methods.


KADEL: Knowledge-Aware Denoising Learning for Commit Message Generation

arXiv.org Artificial Intelligence

Commit messages are natural language descriptions of code changes, which are important for software evolution such as code understanding and maintenance. However, previous methods are trained on the entire dataset without considering the fact that a portion of commit messages adhere to good practice (i.e., good-practice commits), while the rest do not. On the basis of our empirical study, we discover that training on good-practice commits significantly contributes to the commit message generation. Motivated by this finding, we propose a novel knowledge-aware denoising learning method called KADEL. Considering that good-practice commits constitute only a small proportion of the dataset, we align the remaining training samples with these good-practice commits. To achieve this, we propose a model that learns the commit knowledge by training on good-practice commits. This knowledge model enables supplementing more information for training samples that do not conform to good practice. However, since the supplementary information may contain noise or prediction errors, we propose a dynamic denoising training method. This method composes a distribution-aware confidence function and a dynamic distribution list, which enhances the effectiveness of the training process. Experimental results on the whole MCMD dataset demonstrate that our method overall achieves state-of-the-art performance compared with previous methods. Our source code and data are available at https://github.com/DeepSoftwareAnalytics/KADEL


A Neural Tangent Kernel View on Federated Averaging for Deep Linear Neural Network

arXiv.org Machine Learning

Federated averaging (FedAvg) is a widely employed paradigm for collaboratively training models from distributed clients without sharing data. Nowadays, the neural network has achieved remarkable success due to its extraordinary performance, which makes it a preferred choice as the model in FedAvg. However, the optimization problem of the neural network is often non-convex even non-smooth. Furthermore, FedAvg always involves multiple clients and local updates, which results in an inaccurate updating direction. These properties bring difficulties in analyzing the convergence of FedAvg in training neural networks. Recently, neural tangent kernel (NTK) theory has been proposed towards understanding the convergence of first-order methods in tackling the non-convex problem of neural networks. The deep linear neural network is a classical model in theoretical subject due to its simple formulation. Nevertheless, there exists no theoretical result for the convergence of FedAvg in training the deep linear neural network. By applying NTK theory, we make a further step to provide the first theoretical guarantee for the global convergence of FedAvg in training deep linear neural networks. Specifically, we prove FedAvg converges to the global minimum at a linear rate $\mathcal{O}\big((1-\eta K /N)^t\big)$, where $t$ is the number of iterations, $\eta$ is the learning rate, $N$ is the number of clients and $K$ is the number of local updates. Finally, experimental evaluations on two benchmark datasets are conducted to empirically validate the correctness of our theoretical findings.


BotanicGarden: A high-quality and large-scale robot navigation dataset in challenging natural environments

arXiv.org Artificial Intelligence

The rapid developments of mobile robotics and autonomous navigation over the years are largely empowered by public datasets for testing and upgrading, such as SLAM and localization tasks. Impressive demos and benchmark results have arisen, indicating the establishment of a mature technical framework. However, from the view point of real-world deployments, there are still critical defects of robustness in challenging environments, especially in large-scale, GNSS-denied, textural-monotonous, and unstructured scenarios. To meet the pressing validation demands in such scope, we build a novel challenging robot navigation dataset in a large botanic garden of more than 48000m2. Comprehensive sensors are employed, including high-res/rate stereo Gray&RGB cameras, rotational and forward 3D LiDARs, and low-cost and industrial-grade IMUs, all of which are well calibrated and accurately hardware-synchronized. An all-terrain wheeled robot is configured to mount the sensor suite and provide odometry data. A total of 32 long and short sequences of 2.3 million images are collected, covering scenes of thick woods, riversides, narrow paths, bridges, and grasslands that rarely appeared in previous resources. Excitedly, both highly-accurate ego-motions and 3D map ground truth are provided, along with fine-annotated vision semantics. Our goal is to contribute a high-quality dataset to advance robot navigation and sensor fusion research to a higher level.


Adapting Step-size: A Unified Perspective to Analyze and Improve Gradient-based Methods for Adversarial Attacks

arXiv.org Artificial Intelligence

Learning adversarial examples can be formulated as an optimization problem of maximizing the loss function with some box-constraints. However, for solving this induced optimization problem, the state-of-the-art gradient-based methods such as FGSM, I-FGSM and MI-FGSM look different from their original methods especially in updating the direction, which makes it difficult to understand them and then leaves some theoretical issues to be addressed in viewpoint of optimization. In this paper, from the perspective of adapting step-size, we provide a unified theoretical interpretation of these gradient-based adversarial learning methods. We show that each of these algorithms is in fact a specific reformulation of their original gradient methods but using the step-size rules with only current gradient information. Motivated by such analysis, we present a broad class of adaptive gradient-based algorithms based on the regular gradient methods, in which the step-size strategy utilizing information of the accumulated gradients is integrated. Such adaptive step-size strategies directly normalize the scale of the gradients rather than use some empirical operations. The important benefit is that convergence for the iterative algorithms is guaranteed and then the whole optimization process can be stabilized. The experiments demonstrate that our AdaI-FGM consistently outperforms I-FGSM and AdaMI-FGM remains competitive with MI-FGSM for black-box attacks.


A high-resolution dynamical view on momentum methods for over-parameterized neural networks

arXiv.org Artificial Intelligence

Due to the simplicity and efficiency of the first-order gradient method, it has been widely used in training neural networks. Although the optimization problem of the neural network is non-convex, recent research has proved that the first-order method is capable of attaining a global minimum for training over-parameterized neural networks, where the number of parameters is significantly larger than that of training instances. Momentum methods, including heavy ball method (HB) and Nesterov's accelerated method (NAG), are the workhorse first-order gradient methods owning to their accelerated convergence. In practice, NAG often exhibits better performance than HB. However, current research fails to distinguish their convergence difference in training neural networks. Motivated by this, we provide convergence analysis of HB and NAG in training an over-parameterized two-layer neural network with ReLU activation, through the lens of high-resolution dynamical systems and neural tangent kernel (NTK) theory. Compared to existing works, our analysis not only establishes tighter upper bounds of the convergence rate for both HB and NAG, but also characterizes the effect of the gradient correction term, which leads to the acceleration of NAG over HB. Finally, we validate our theoretical result on three benchmark datasets.


RACE: Retrieval-Augmented Commit Message Generation

arXiv.org Artificial Intelligence

Commit messages are important for software development and maintenance. Many neural network-based approaches have been proposed and shown promising results on automatic commit message generation. However, the generated commit messages could be repetitive or redundant. In this paper, we propose RACE, a new retrieval-augmented neural commit message generation method, which treats the retrieved similar commit as an exemplar and leverages it to generate an accurate commit message. As the retrieved commit message may not always accurately describe the content/intent of the current code diff, we also propose an exemplar guider, which learns the semantic similarity between the retrieved and current code diff and then guides the generation of commit message based on the similarity. We conduct extensive experiments on a large public dataset with five programming languages. Experimental results show that RACE can outperform all baselines. Furthermore, RACE can boost the performance of existing Seq2Seq models in commit message generation.


Simultaneous Localization and Mapping Related Datasets: A Comprehensive Survey

arXiv.org Artificial Intelligence

Due to the complicated procedure and costly hardware, Simultaneous Localization and Mapping (SLAM) has been heavily dependent on public datasets for drill and evaluation, leading to many impressive demos and good benchmark scores. However, with a huge contrast, SLAM is still struggling on the way towards mature deployment, which sounds a warning: some of the datasets are overexposed, causing biased usage and evaluation. This raises the problem on how to comprehensively access the existing datasets and correctly select them. Moreover, limitations do exist in current datasets, then how to build new ones and which directions to go? Nevertheless, a comprehensive survey which can tackle the above issues does not exist yet, while urgently demanded by the community. To fill the gap, this paper strives to cover a range of cohesive topics about SLAM related datasets, including general collection methodology and fundamental characteristic dimensions, SLAM related tasks taxonomy and datasets categorization, introduction of state-of-the-arts, overview and comparison of existing datasets, review of evaluation criteria, and analyses and discussions about current limitations and future directions, looking forward to not only guiding the dataset selection, but also promoting the dataset research.


On the Evaluation of Commit Message Generation Models: An Experimental Study

arXiv.org Artificial Intelligence

Commit messages are natural language descriptions of code changes, which are important for program understanding and maintenance. However, writing commit messages manually is time-consuming and laborious, especially when the code is updated frequently. Various approaches utilizing generation or retrieval techniques have been proposed to automatically generate commit messages. To achieve a better understanding of how the existing approaches perform in solving this problem, this paper conducts a systematic and in-depth analysis of the state-of-the-art models and datasets. We find that: (1) Different variants of the BLEU metric are used in previous works, which affects the evaluation and understanding of existing methods. (2) Most existing datasets are crawled only from Java repositories while repositories in other programming languages are not sufficiently explored. (3) Dataset splitting strategies can influence the performance of existing models by a large margin. Some models show better performance when the datasets are split by commit, while other models perform better when the datasets are split by timestamp or by project. Based on our findings, we conduct a human evaluation and find the BLEU metric that best correlates with the human scores for the task. We also collect a large-scale, information-rich, and multi-language commit message dataset MCMD and evaluate existing models on this dataset. Furthermore, we conduct extensive experiments under different dataset splitting strategies and suggest the suitable models under different scenarios. Based on the experimental results and findings, we provide feasible suggestions for comprehensively evaluating commit message generation models and discuss possible future research directions. We believe this work can help practitioners and researchers better evaluate and select models for automatic commit message generation.