Tao, Ran
LWFNet: Coherent Doppler Wind Lidar-Based Network for Wind Field Retrieval
Tao, Ran, Wang, Chong, Chen, Hao, Jia, Mingjiao, Shang, Xiang, Qu, Luoyuan, Shentu, Guoliang, Lu, Yanyu, Huo, Yanfeng, Bai, Lei, Xue, Xianghui, Dou, Xiankang
Accurate detection of wind fields within the troposphere is essential for atmospheric dynamics research and plays a crucial role in extreme weather forecasting. Coherent Doppler wind lidar (CDWL) is widely regarded as the most suitable technique for high spatial and temporal resolution wind field detection. However, since coherent detection relies heavily on the concentration of aerosol particles, which cause Mie scattering, the received backscattering lidar signal exhibits significantly low intensity at high altitudes. As a result, conventional methods, such as spectral centroid estimation, often fail to produce credible and accurate wind retrieval results in these regions. To address this issue, we propose LWFNet, the first Lidar-based Wind Field (WF) retrieval neural Network, built upon Transformer and the Kolmogorov-Arnold network. Our model is trained solely on targets derived from the traditional wind retrieval algorithm and utilizes radiosonde measurements as the ground truth for test results evaluation. Experimental results demonstrate that LWFNet not only extends the maximum wind field detection range but also produces more accurate results, exhibiting a level of precision that surpasses the labeled targets. This phenomenon, which we refer to as super-accuracy, is explored by investigating the potential underlying factors that contribute to this intriguing occurrence. In addition, we compare the performance of LWFNet with other state-of-the-art (SOTA) models, highlighting its superior effectiveness and capability in high-resolution wind retrieval. LWFNet demonstrates remarkable performance in lidar-based wind field retrieval, setting a benchmark for future research and advancing the development of deep learning models in this domain.
Task-Parameter Nexus: Task-Specific Parameter Learning for Model-Based Control
Cheng, Sheng, Tao, Ran, Gu, Yuliang, Wang, Shenlong, Wang, Xiaofeng, Hovakimyan, Naira
This paper presents the Task-Parameter Nexus (TPN), a learning-based approach for online determination of the (near-)optimal control parameters of model-based controllers (MBCs) for tracking tasks. In TPN, a deep neural network is introduced to predict the control parameters for any given tracking task at runtime, especially when optimal parameters for new tasks are not immediately available. To train this network, we constructed a trajectory bank with various speeds and curvatures that represent different motion characteristics. Then, for each trajectory in the bank, we auto-tune the optimal control parameters offline and use them as the corresponding ground truth. With this dataset, the TPN is trained by supervised learning. We evaluated the TPN on the quadrotor platform. In simulation experiments, it is shown that the TPN can predict near-optimal control parameters for a spectrum of tracking tasks, demonstrating its robust generalization capabilities to unseen tasks.
CROPS: A Deployable Crop Management System Over All Possible State Availabilities
Wu, Jing, Lai, Zhixin, Liu, Shengjie, Chen, Suiyao, Tao, Ran, Zhao, Pan, Tao, Chuyuan, Cheng, Yikun, Hovakimyan, Naira
Exploring the optimal management strategy for nitrogen and irrigation has a significant impact on crop yield, economic profit, and the environment. To tackle this optimization challenge, this paper introduces a deployable \textbf{CR}op Management system \textbf{O}ver all \textbf{P}ossible \textbf{S}tate availabilities (CROPS). CROPS employs a language model (LM) as a reinforcement learning (RL) agent to explore optimal management strategies within the Decision Support System for Agrotechnology Transfer (DSSAT) crop simulations. A distinguishing feature of this system is that the states used for decision-making are partially observed through random masking. Consequently, the RL agent is tasked with two primary objectives: optimizing management policies and inferring masked states. This approach significantly enhances the RL agent's robustness and adaptability across various real-world agricultural scenarios. Extensive experiments on maize crops in Florida, USA, and Zaragoza, Spain, validate the effectiveness of CROPS. Not only did CROPS achieve State-of-the-Art (SOTA) results across various evaluation metrics such as production, profit, and sustainability, but the trained management policies are also immediately deployable in over of ten millions of real-world contexts. Furthermore, the pre-trained policies possess a noise resilience property, which enables them to minimize potential sensor biases, ensuring robustness and generalizability. Finally, unlike previous methods, the strength of CROPS lies in its unified and elegant structure, which eliminates the need for pre-defined states or multi-stage training. These advancements highlight the potential of CROPS in revolutionizing agricultural practices.
Improving Topic Relevance Model by Mix-structured Summarization and LLM-based Data Augmentation
Liu, Yizhu, Tao, Ran, Guo, Shengyu, Yang, Yifan
Topic relevance between query and document is a very important part of social search, which can evaluate the degree of matching between document and user's requirement. In most social search scenarios such as Dianping, modeling search relevance always faces two challenges. One is that many documents in social search are very long and have much redundant information. The other is that the training data for search relevance model is difficult to get, especially for multi-classification relevance model. To tackle above two problems, we first take query concatenated with the query-based summary and the document summary without query as the input of topic relevance model, which can help model learn the relevance degree between query and the core topic of document. Then, we utilize the language understanding and generation abilities of large language model (LLM) to rewrite and generate query from queries and documents in existing training data, which can construct new query-document pairs as training data. Extensive offline experiments and online A/B tests show that the proposed approaches effectively improve the performance of relevance modeling.
The New Agronomists: Language Models are Experts in Crop Management
Wu, Jing, Lai, Zhixin, Chen, Suiyao, Tao, Ran, Zhao, Pan, Hovakimyan, Naira
Crop management plays a crucial role in determining crop yield, economic profitability, and environmental sustainability. Despite the availability of management guidelines, optimizing these practices remains a complex and multifaceted challenge. In response, previous studies have explored using reinforcement learning with crop simulators, typically employing simple neural-network-based reinforcement learning (RL) agents. Building on this foundation, this paper introduces a more advanced intelligent crop management system. This system uniquely combines RL, a language model (LM), and crop simulations facilitated by the Decision Support System for Agrotechnology Transfer (DSSAT). We utilize deep RL, specifically a deep Q-network, to train management policies that process numerous state variables from the simulator as observations. A novel aspect of our approach is the conversion of these state variables into more informative language, facilitating the language model's capacity to understand states and explore optimal management practices. The empirical results reveal that the LM exhibits superior learning capabilities. Through simulation experiments with maize crops in Florida (US) and Zaragoza (Spain), the LM not only achieves state-of-the-art performance under various evaluation metrics but also demonstrates a remarkable improvement of over 49\% in economic profit, coupled with reduced environmental impact when compared to baseline methods. Our code is available at \url{https://github.com/jingwu6/LM_AG}.
Learning with Noisy Foundation Models
Chen, Hao, Wang, Jindong, Wang, Zihan, Tao, Ran, Wei, Hongxin, Xie, Xing, Sugiyama, Masashi, Raj, Bhiksha
Foundation models are usually pre-trained on large-scale datasets and then adapted to downstream tasks through tuning. However, the large-scale pre-training datasets, often inaccessible or too expensive to handle, can contain label noise that may adversely affect the generalization of the model and pose unexpected risks. This paper stands out as the first work to comprehensively understand and analyze the nature of noise in pre-training datasets and then effectively mitigate its impacts on downstream tasks. Specifically, through extensive experiments of fully-supervised and image-text contrastive pre-training on synthetic noisy ImageNet-1K, YFCC15M, and CC12M datasets, we demonstrate that, while slight noise in pre-training can benefit in-domain (ID) performance, where the training and testing data share a similar distribution, it always deteriorates out-of-domain (OOD) performance, where training and testing distributions are significantly different. These observations are agnostic to scales of pre-training datasets, pre-training noise types, model architectures, pre-training objectives, downstream tuning methods, and downstream applications. We empirically ascertain that the reason behind this is that the pre-training noise shapes the feature space differently. We then propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization, which is applicable in both parameter-efficient and black-box tuning manners. We additionally conduct extensive experiments on popular vision and language models, including APIs, which are supervised and self-supervised pre-trained on realistic noisy data for evaluation. Our analysis and results demonstrate the importance of this novel and fundamental research direction, which we term as Noisy Model Learning.
DiffTune-MPC: Closed-Loop Learning for Model Predictive Control
Tao, Ran, Cheng, Sheng, Wang, Xiaofeng, Wang, Shenlong, Hovakimyan, Naira
Model predictive control (MPC) has been applied to many platforms in robotics and autonomous systems for its capability to predict a system's future behavior while incorporating constraints that a system may have. To enhance the performance of a system with an MPC controller, one can manually tune the MPC's cost function. However, it can be challenging due to the possibly high dimension of the parameter space as well as the potential difference between the open-loop cost function in MPC and the overall closed-loop performance metric function. This paper presents DiffTune-MPC, a novel learning method, to learn the cost function of an MPC in a closed-loop manner. The proposed framework is compatible with the scenario where the time interval for performance evaluation and MPC's planning horizon have different lengths. We show the auxiliary problem whose solution admits the analytical gradients of MPC and discuss its variations in different MPC settings. Simulation results demonstrate the capability of DiffTune-MPC and illustrate the influence of constraints (from actuation limits) on learning.
Concealed Electronic Countermeasures of Radar Signal with Adversarial Examples
Ma, Ruinan, Zhu, Canjie, Lu, Mingfeng, Li, Yunjie, Tan, Yu-an, Zhang, Ruibin, Tao, Ran
Electronic countermeasures involving radar signals are an important aspect of modern warfare. Traditional electronic countermeasures techniques typically add large-scale interference signals to ensure interference effects, which can lead to attacks being too obvious. In recent years, AI-based attack methods have emerged that can effectively solve this problem, but the attack scenarios are currently limited to time domain radar signal classification. In this paper, we focus on the time-frequency images classification scenario of radar signals. We first propose an attack pipeline under the time-frequency images scenario and DITIMI-FGSM attack algorithm with high transferability. Then, we propose STFT-based time domain signal attack(STDS) algorithm to solve the problem of non-invertibility in time-frequency analysis, thus obtaining the time-domain representation of the interference signal. A large number of experiments show that our attack pipeline is feasible and the proposed attack method has a high success rate.
Understanding and Mitigating the Label Noise in Pre-training on Downstream Tasks
Chen, Hao, Wang, Jindong, Shah, Ankit, Tao, Ran, Wei, Hongxin, Xie, Xing, Sugiyama, Masashi, Raj, Bhiksha
Pre-training on large-scale datasets and then fine-tuning on downstream tasks have become a standard practice in deep learning. However, pre-training data often contain label noise that may adversely affect the generalization of the model. This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks. More specifically, through extensive experiments of supervised pre-training models on synthetic noisy ImageNet-1K and YFCC15M datasets, we demonstrate that while slight noise in pre-training can benefit in-domain (ID) transfer performance, where the training and testing data share the same distribution, it always deteriorates out-of-domain (OOD) performance, where training and testing data distribution are different. We empirically verify that the reason behind is noise in pre-training shapes the feature space differently. We then propose a lightweight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization on both ID and OOD tasks, considering one may not be able to fully fine-tune or even access the pre-trained models. We conduct practical experiments on popular vision and language models that are pre-trained on noisy data for evaluation of our approach. Our analysis and results show the importance of this interesting and novel research direction, which we term Noisy Model Learning.
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
Chen, Hao, Shah, Ankit, Wang, Jindong, Tao, Ran, Wang, Yidong, Xie, Xing, Sugiyama, Masashi, Singh, Rita, Raj, Bhiksha
Learning with reduced labeling standards, such as noisy label, partial label, and multiple label candidates, which we generically refer to as \textit{imprecise} labels, is a commonplace challenge in machine learning tasks. Previous methods tend to propose specific designs for every emerging imprecise label configuration, which is usually unsustainable when multiple configurations of imprecision coexist. In this paper, we introduce imprecise label learning (ILL), a framework for the unification of learning with various imprecise label configurations. ILL leverages expectation-maximization (EM) for modeling the imprecise label information, treating the precise labels as latent variables.Instead of approximating the correct labels for training, it considers the entire distribution of all possible labeling entailed by the imprecise information. We demonstrate that ILL can seamlessly adapt to partial label learning, semi-supervised learning, noisy label learning, and, more importantly, a mixture of these settings. Notably, ILL surpasses the existing specified techniques for handling imprecise labels, marking the first unified framework with robust and effective performance across various challenging settings. We hope our work will inspire further research on this topic, unleashing the full potential of ILL in wider scenarios where precise labels are expensive and complicated to obtain.