Goto

Collaborating Authors

 Sundararajan, Mukund


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


Private Matrix Factorization with Public Item Features

arXiv.org Artificial Intelligence

We consider the problem of training private recommendation models with access to public item features. Training with Differential Privacy (DP) offers strong privacy guarantees, at the expense of loss in recommendation quality. We show that incorporating public item features during training can help mitigate this loss in quality. We propose a general approach based on collective matrix factorization (CMF), that works by simultaneously factorizing two matrices: the user feedback matrix (representing sensitive data) and an item feature matrix that encodes publicly available (non-sensitive) item information. The method is conceptually simple, easy to tune, and highly scalable. It can be applied to different types of public item data, including: (1) categorical item features; (2) item-item similarities learned from public sources; and (3) publicly available user feedback. Furthermore, these data modalities can be collectively utilized to fully leverage public data. Evaluating our method on a standard DP recommendation benchmark, we find that using public item features significantly narrows the quality gap between private models and their non-private counterparts. As privacy constraints become more stringent, models rely more heavily on public side features for recommendation. This results in a smooth transition from collaborative filtering to item-based contextual recommendations.


Using Foundation Models to Detect Policy Violations with Minimal Supervision

arXiv.org Artificial Intelligence

Foundation models, i.e. large neural networks pre-trained on large text corpora, have revolutionized NLP. They can be instructed directly (e.g. (arXiv:2005.14165)) - this is called hard prompting - and they can be tuned using very little data (e.g. (arXiv:2104.08691)) - this technique is called soft prompting. We seek to leverage their capabilities to detect policy violations. Our contributions are: We identify a hard prompt that adapts chain-of-thought prompting to policy violation tasks. This prompt produces policy violation classifications, along with extractive explanations that justify the classification. We compose the hard-prompts with soft prompt tuning to produce a classifier that attains high accuracy with very little supervision; the same classifier also produces explanations. Though the supervision only acts on the classifications, we find that the modified explanations remain consistent with the (tuned) model's response. Along the way, we identify several unintuitive aspects of foundation models. For instance, adding an example from a specific class can actually reduce predictions of that class, and separately, the effects of tokenization on scoring etc. Based on our technical results, we identify a simple workflow for product teams to quickly develop effective policy violation detectors.


Multi-Task Differential Privacy Under Distribution Skew

arXiv.org Artificial Intelligence

We study the problem of multi-task learning under user-level differential privacy, in which $n$ users contribute data to $m$ tasks, each involving a subset of users. One important aspect of the problem, that can significantly impact quality, is the distribution skew among tasks. Certain tasks may have much fewer data samples than others, making them more susceptible to the noise added for privacy. It is natural to ask whether algorithms can adapt to this skew to improve the overall utility. We give a systematic analysis of the problem, by studying how to optimally allocate a user's privacy budget among tasks. We propose a generic algorithm, based on an adaptive reweighting of the empirical loss, and show that when there is task distribution skew, this gives a quantifiable improvement of excess empirical risk. Experimental studies on recommendation problems that exhibit a long tail of small tasks, demonstrate that our methods significantly improve utility, achieving the state of the art on two standard benchmarks.


The Penalty Imposed by Ablated Data Augmentation

arXiv.org Machine Learning

There is a set of data augmentation techniques that ablate parts of the input at random. These include input dropout, cutout, and random erasing. We term these techniques ablated data augmentation. Though these techniques seems similar in spirit and have shown success in improving model performance in a variety of domains, we do not yet have a mathematical understanding of the differences between these techniques like we do for other regularization techniques like L1 or L2. First, we study a formal model of mean ablated data augmentation and inverted dropout for linear regression. We prove that ablated data augmentation is equivalent to optimizing the ordinary least squares objective along with a penalty that we call the Contribution Covariance Penalty and inverted dropout, a more common implementation than dropout in popular frameworks, is equivalent to optimizing the ordinary least squares objective along with Modified L2. For deep networks, we demonstrate an empirical version of the result if we replace contributions with attributions and coefficients with average gradients, i.e., the Contribution Covariance Penalty and Modified L2 Penalty drop with the increase of the corresponding ablated data augmentation across a variety of networks.


The many Shapley values for model explanation

arXiv.org Artificial Intelligence

The Shapley value has become a popular method to attribute the prediction of a machine-learning model on an input to its base features. The Shapley value [1] is known to be the unique method that satisfies certain desirable properties, and this motivates its use. Unfortunately, despite this uniqueness result, there are a multiplicity of Shapley values used in explaining a model's prediction. This is because there are many ways to apply the Shapley value that differ in how they reference the model, the training data, and the explanation context. In this paper, we study an approach that applies the Shapley value to conditional expectations (CES) of sets of features (cf. [2]) that subsumes several prior approaches within a common framework. We provide the first algorithm for the general version of CES. We show that CES can result in counterintuitive attributions in theory and in practice (we study a diabetes prediction task); for instance, CES can assign non-zero attributions to features that are not referenced by the model. In contrast, we show that an approach called the Baseline Shapley (BS) does not exhibit counterintuitive attributions; we support this claim with a uniqueness (axiomatic) result. We show that BS is a special case of CES, and CES with an independent feature distribution coincides with a randomized version of BS. Thus, BS fits into the CES framework, but does not suffer from many of CES's deficiencies.


A Note about: Local Explanation Methods for Deep Neural Networks lack Sensitivity to Parameter Values

arXiv.org Machine Learning

Local explanation methods, also known as attribution methods, attribute a deep network's prediction to its input (cf. Baehrens et al. (2010)). We respond to the claim from Adebayo et al. (2018) that local explanation methods lack sensitivity, i.e., DNNs with randomly-initialized weights produce explanations that are both visually and quantitatively similar to those produced by DNNs with learned weights. Further investigation reveals that their findings are due to two choices in their analysis: (a) ignoring the signs of the attributions; and (b) for integrated gradients (IG), including pixels in their analysis that have zero attributions by choice of the baseline (an auxiliary input relative to which the attributions are computed). When both factors are accounted for, IG attributions for a random network and the actual network are uncorrelated. Our investigation also sheds light on how these issues affect visualizations, although we note that more work is needed to understand how viewers interpret the difference between the random and the actual attributions.


How Important Is a Neuron?

arXiv.org Machine Learning

The problem of attributing a deep network's prediction to its \emph{input/base} features is well-studied. We introduce the notion of \emph{conductance} to extend the notion of attribution to the understanding the importance of \emph{hidden} units. Informally, the conductance of a hidden unit of a deep network is the \emph{flow} of attribution via this hidden unit. We use conductance to understand the importance of a hidden unit to the prediction for a specific input, or over a set of inputs. We evaluate the effectiveness of conductance in multiple ways, including theoretical properties, ablation studies, and a feature selection task. The empirical evaluations are done using the Inception network over ImageNet data, and a sentiment analysis network over reviews. In both cases, we demonstrate the effectiveness of conductance in identifying interesting insights about the internal workings of these networks.


Did the Model Understand the Question?

arXiv.org Artificial Intelligence

We analyze state-of-the-art deep learning models for three tasks: question answering on (1) images, (2) tables, and (3) passages of text. Using the notion of \emph{attribution} (word importance), we find that these deep networks often ignore important question terms. Leveraging such behavior, we perturb questions to craft a variety of adversarial examples. Our strongest attacks drop the accuracy of a visual question answering model from $61.1\%$ to $19\%$, and that of a tabular question answering model from $33.5\%$ to $3.3\%$. Additionally, we show how attributions can strengthen attacks proposed by Jia and Liang (2017) on paragraph comprehension models. Our results demonstrate that attributions can augment standard measures of accuracy and empower investigation of model performance. When a model is accurate but for the wrong reasons, attributions can surface erroneous logic in the model that indicates inadequacies in the test data.