Goto

Collaborating Authors

 Sun, Zhiyong


A Comparative Study of Artificial Potential Fields and Safety Filters

arXiv.org Artificial Intelligence

In this paper, we have demonstrated that the controllers designed by a classical motion planning tool, namely artificial potential fields (APFs), can be derived from a recently prevalent approach: control barrier function quadratic program (CBF-QP) safety filters. By integrating APF information into the CBF-QP framework, we establish a bridge between these two methodologies. Specifically, this is achieved by employing the attractive potential field as a control Lyapunov function (CLF) to guide the design of the nominal controller, and then the repulsive potential field serves as a reciprocal CBF (RCBF) to define a CBF-QP safety filter. Building on this integration, we extend the design of the CBF-QP safety filter to accommodate a more general class of dynamical models featuring a control-affine structure. This extension yields a special CBF-QP safety filter and a general APF solution suitable for control-affine dynamical models. Through a reach-avoid navigation example, we showcase the efficacy of the developed approaches.


Unifying Controller Design for Stabilizing Nonlinear Systems with Norm-Bounded Control Inputs

arXiv.org Artificial Intelligence

This paper revisits a classical challenge in the design of stabilizing controllers for nonlinear systems with a norm-bounded input constraint. By extending Lin-Sontag's universal formula and introducing a generic (state-dependent) scaling term, a unifying controller design method is proposed. The incorporation of this generic scaling term gives a unified controller and enables the derivation of alternative universal formulas with various favorable properties, which makes it suitable for tailored control designs to meet specific requirements and provides versatility across different control scenarios. Additionally, we present a constructive approach to determine the optimal scaling term, leading to an explicit solution to an optimization problem, named optimization-based universal formula. The resulting controller ensures asymptotic stability, satisfies a norm-bounded input constraint, and optimizes a predefined cost function. Finally, the essential properties of the unified controllers are analyzed, including smoothness, continuity at the origin, stability margin, and inverse optimality. Simulations validate the approach, showcasing its effectiveness in addressing a challenging stabilizing control problem of a nonlinear system.


Coordinated Guiding Vector Field Design for Ordering-Flexible Multi-Robot Surface Navigation

arXiv.org Artificial Intelligence

We design a distributed coordinated guiding vector field (CGVF) for a group of robots to achieve ordering-flexible motion coordination while maneuvering on a desired two-dimensional (2D) surface. The CGVF is characterized by three terms, i.e., a convergence term to drive the robots to converge to the desired surface, a propagation term to provide a traversing direction for maneuvering on the desired surface, and a coordinated term to achieve the surface motion coordination with an arbitrary ordering of the robotic group. By setting the surface parameters as additional virtual coordinates, the proposed approach eliminates the potential singularity of the CGVF and enables both the global convergence to the desired surface and the maneuvering on the surface from all possible initial conditions. The ordering-flexible surface motion coordination is realized by each robot to share with its neighbors only two virtual coordinates, i.e. that of a given target and that of its own, which reduces the communication and computation cost in multi-robot surface navigation. Finally, the effectiveness of the CGVF is substantiated by extensive numerical simulations.


Quadrotor Stabilization with Safety Guarantees: A Universal Formula Approach

arXiv.org Artificial Intelligence

Safe stabilization is a significant challenge for quadrotors, which involves reaching a goal position while avoiding obstacles. Most of the existing solutions for this problem rely on optimization-based methods, demanding substantial onboard computational resources. This paper introduces a novel approach to address this issue and provides a solution that offers fast computational capabilities tailored for onboard execution. Drawing inspiration from Sontag's universal formula, we propose an analytical control strategy that incorporates the conditions of control Lyapunov functions (CLFs) and control barrier functions (CBFs), effectively avoiding the need for solving optimization problems onboard. Moreover, we extend our approach by incorporating the concepts of input-to-state stability (ISS) and input-to-state safety (ISSf), enhancing the universal formula's capacity to effectively manage disturbances. Furthermore, we present a projection-based approach to ensure that the universal formula remains effective even when faced with control input constraints. The basic idea of this approach is to project the control input derived from the universal formula onto the closest point within the control input domain. Through comprehensive simulations and experimental results, we validate the efficacy and highlight the advantages of our methodology.


An alternating peak-optimization method for optimal trajectory generation of quadrotor drones

arXiv.org Artificial Intelligence

In this paper, we propose an alternating optimization method to address a time-optimal trajectory generation problem. Different from the existing solutions, our approach introduces a new formulation that minimizes the overall trajectory running time while maintaining the polynomial smoothness constraints and incorporating hard limits on motion derivatives to ensure feasibility. To address this problem, an alternating peak-optimization method is developed, which splits the optimization process into two sub-optimizations: the first sub-optimization optimizes polynomial coefficients for smoothness, and the second sub-optimization adjusts the time allocated to each trajectory segment. These are alternated until a feasible minimum-time solution is found. We offer a comprehensive set of simulations and experiments to showcase the superior performance of our approach in comparison to existing methods. A collection of demonstration videos with real drone flying experiments can be accessed at https://www.youtube.com/playlist?list=PLQGtPFK17zUYkwFT-fr0a8E49R8Uq712l .


Automated Formation Control Synthesis from Temporal Logic Specifications

arXiv.org Artificial Intelligence

In many practical scenarios, multi-robot systems are envisioned to support humans in executing complicated tasks within structured environments, such as search-and-rescue tasks. We propose a framework for a multi-robot swarm to fulfill complex tasks represented by temporal logic specifications. Given temporal logic specifications on the swarm formation and navigation, we develop a controller with runtime safety and convergence guarantees that drive the swarm to formally satisfy the specification. In addition, the synthesized controller will autonomously switch formations as necessary and react to uncontrollable events from the environment. The efficacy of the proposed framework is validated with a simulation study on the navigation of multiple quadrotor robots.


Risk-Aware Reward Shaping of Reinforcement Learning Agents for Autonomous Driving

arXiv.org Artificial Intelligence

Reinforcement learning (RL) is an effective approach to motion planning in autonomous driving, where an optimal driving policy can be automatically learned using the interaction data with the environment. Nevertheless, the reward function for an RL agent, which is significant to its performance, is challenging to be determined. The conventional work mainly focuses on rewarding safe driving states but does not incorporate the awareness of risky driving behaviors of the vehicles. In this paper, we investigate how to use risk-aware reward shaping to leverage the training and test performance of RL agents in autonomous driving. Based on the essential requirements that prescribe the safety specifications for general autonomous driving in practice, we propose additional reshaped reward terms that encourage exploration and penalize risky driving behaviors. A simulation study in OpenAI Gym indicates the advantage of risk-aware reward shaping for various RL agents. Also, we point out that proximal policy optimization (PPO) is likely to be the best RL method that works with risk-aware reward shaping.


A Novel Vector-Field-Based Motion Planning Algorithm for 3D Nonholonomic Robots

arXiv.org Artificial Intelligence

This paper focuses on the motion planning for mobile robots in 3D, which are modelled by 6-DOF rigid body systems with nonholonomic kinematics constraints. We not only specify the target position, but also bring in the requirement of the heading direction at the terminal time, which gives rise to a new and more challenging 3D motion planning problem. The proposed planning algorithm involves a novel velocity vector field (VF) over the workspace, and by following the VF, the robot can be navigated to the destination with the specified heading direction. In order to circumvent potential collisions with obstacles and other robots, a composite VF is designed by composing the navigation VF and an additional VF tangential to the boundary of the dangerous area. Moreover, we propose a priority-based algorithm to deal with the motion coupling issue among multiple robots. Finally, numerical simulations are conducted to verify the theoretical results.


Characterizing bearing equivalence in directed graphs

arXiv.org Artificial Intelligence

In this paper, we study bearing equivalence in directed graphs. We first give a strengthened definition of bearing equivalence based on the \textit{kernel equivalence} relationship between bearing rigidity matrix and bearing Laplacian matrix. We then present several conditions to characterize bearing equivalence for both directed acyclic and cyclic graphs. These conditions involve the spectrum and null space of the associated bearing Laplacian matrix for a directed bearing formation. For directed acyclic graphs, all eigenvalues of the associated bearing Laplacian are real and nonnegative, while for directed graphs containing cycles, the bearing Laplacian can have eigenvalues with negative real parts. Several examples of bearing equivalent and bearing non-equivalent formations are given to illustrate these conditions.


Balance Between Efficient and Effective Learning: Dense2Sparse Reward Shaping for Robot Manipulation with Environment Uncertainty

arXiv.org Machine Learning

Efficient and effective learning is one of the ultimate goals of the deep reinforcement learning (DRL), although the compromise has been made in most of the time, especially for the application of robot manipulations. Learning is always expensive for robot manipulation tasks and the learning effectiveness could be affected by the system uncertainty. In order to solve above challenges, in this study, we proposed a simple but powerful reward shaping method, namely Dense2Sparse. It combines the advantage of fast convergence of dense reward and the noise isolation of the sparse reward, to achieve a balance between learning efficiency and effectiveness, which makes it suitable for robot manipulation tasks. We evaluated our Dense2Sparse method with a series of ablation experiments using the state representation model with system uncertainty. The experiment results show that the Dense2Sparse method obtained higher expected reward compared with the ones using standalone dense reward or sparse reward, and it also has a superior tolerance of system uncertainty.